UNIFLOW-200 MFC

Flow Computer

for closed conduit and open channel flow measurement

Instruction manual

Process Control Kft. H -1091 Budapest Haller u. 88. Tel./fax: 36 1 215 4161 / 36 1 215 6730 E-mail: info@processcontrol.hu Web: www.processcontrol.hu

Revision tracking sheet

April 2020

This manual may be revised periodically to incorporate new or updated information. Listed below are the revision dates:

Revision Initial issue Rev.1 Rev.2 Rev.3	Date Jun 2008 Jan 2010 Jan 2011 Jun 2013	Firmware version
Rev.4	July 2015	150619
Rev.5	June 2019	190702 and above
Rev.5a	July 2019	190702 and above
Rev.5b	December 2019	190702 and above
Rev.5c	February 2020	200213 and above
Rev.5d	February 2020	200213 and above
Rev.5e	April 2020	200213 and above

While information in this Instruction Manual is presented in good faith and believed to be accurate, Process Control Kft. does not guarantee satisfactory results from reliance upon such information. *Nothing contained herein is to be construed as a warranty or guarantee, express or implied, regarding the performance, merchantability, fitness or any other matter with respect to the products.* Process Control Kft. reserves the right, without notice, to alter or improve the designs or specifications of the products described herein.

Contents

1	About this manual	13
2	Introduction	14
3	Technical specification	17
	3.1 General features	17
	3.2 Technical data	17
	3.3 Accessories	20
4	Plug-in boards and hardware operation	21
	4.1 Plug-in boards	
	4.2 Hardware operation	22
5	1	
	5.1 Installation	
	5.2 Wiring	25
	5.3 Start-up	
	5.4 Start and stop metering streams	
6	· ·	
	6.1 Keypad	
	6.1.1 Numeric keys	
	6.1.2 Editing keys	
	6.1.3 Function keys	
	6.2 Display	
	6.2.1 Navigating the display	
	6.3 Security levels	
	6.4 The menu system	
	6.5 Entering data	
	6.5.1 Changing numeric data	
	6.5.2 Changing selection	
	6.6 Data pages	
7	Maintenance and troubleshooting	
8	Support	
0	8.1 U200ToolBox	
	8.1.1 UNISetup	
	8.1.2 UNIArchive	
	8.1.3 UNIUpdate	
9	Detailed operation – The menu tree	
)	9.1 Flow	
	9.1.1 Stream data	
	9.1.1 Suball data	
	9.1.1.2 Periodic totals	
	9.1.1.2 Ferodic totals	
	9.1.1.9 Flow fates	
	9.1.1.4 Cumulative totals	
	9.1.1.5 Fremium totals	
	9.1.1.0 Fault totals	
	9.1.1.7.2 Fluid data	
	9.1.1.7.3 Gas composition	
	9.1.2 Plant I/O	
	9.1.3 Archive data	39

9.1.3.1	Archived periodic totals	59
9.1.3.2	2 Archived batch data	61
9.1.4 M	Iodbus registers	62
9.1.5 D	Data transfer	63
9.1.6 E	xtra summary display	65
9.1.7 B	atches	66
9.1.7.1	Tank loading batch	66
9.1.7.2	Pipeline interface batch	67
9.1.8 M	feter serial test	69
9.1.9 P	ID	72
9.2 Para	ameters	73
9.2.1 I/	O signal setup	74
9.2.1.1	Analogue (4-20 mA) input channel	74
9.2.1.2	2 PRT/RTD input channel	78
9.2.1.3	B Pulse input channel	80
9.2.1.4	Digital input channel	89
9.2.1.5		91
9.2.1.6	5 Analogue (4-20 mA) output channel	98
9.2.1.7		
9.2.1.8	3 Modbus signal channel	104
9.2.2 St	tream setup	
9.2.2.1	Physical stream setup	106
9.2.2	2.1.1 Fluid selection	107
9.	.2.2.1.1.1 Hydrocarbon mixtures	107
	9.2.2.1.1.1.1 Natural gas	107
	9.2.2.1.1.1.2 Coke oven gas	124
	9.2.2.1.1.1.3 Blast furnace gas	125
9.	.2.2.1.1.2 Pure gases	126
9.	.2.2.1.1.3 Water steam	128
9.	.2.2.1.1.4 Water	129
9.	.2.2.1.1.5 Liquids	130
	9.2.2.1.1.5.1 Crude oil and products	130
	9.2.2.1.1.5.2 Ethanol	134
	9.2.2.1.1.5.3 General liquid	135
	9.2.2.1.1.5.4 Liquid mixture	137
	9.2.2.1.1.5.5 Other	139
9.2.2	2.1.2 Flow meter selection	140
9.	.2.2.1.2.1 Differential pressure devices	140
	9.2.2.1.2.1.1 Orifice plate	140
	9.2.2.1.2.1.2 Nozzle	144
	9.2.2.1.2.1.3 Venturi tube	146
	9.2.2.1.2.1.4 Segmental orifice plate	148
	9.2.2.1.2.1.5 V-Cone meter	148
	9.2.2.1.2.1.6 Compact/Conditioning orifice plate	150
9.	.2.2.1.2.2 Annubar	152
9.	.2.2.1.2.3 Gas turbine meter, Liquid turbine meter, Vortex meter, Mass flow	
m	neter, Ultrasonic meter, Rotameter, Electromagnetic meter, CVOL flow meter,	
St	tream	154
9.	.2.2.1.2.4 Flow meter with power characteristic	155
9.	.2.2.1.2.5 Other	156

9.2.2.1.2.6 Stream	156
9.2.2.1.3 Stream setup	157
9.2.2.1.3.1 Stream setup example – fluid: natural gas, flow meter: orifice met	er 160
9.2.2.1.3.2 Stream setup example – fluid: natural gas, flow meter: turbine me	
	169
9.2.2.1.3.3 Stream setup example – fluid: natural gas, flow meter: ultrasonic	meter
	177
9.2.2.1.3.4 Stream setup – fluid: crude oil, flow meter: liquid turbine meter	184
9.2.2.1.3.5 Stream setup example – fluid: crude oil, flow meter: mass flow n	neter
	194
9.2.2.1.3.6 Stream setup example – fluid: other, flow meter: other (electrical	
power measurement)	
9.2.2.1.4 Premium limits	204
9.2.2.1.5 Limits	205
9.2.2.2 Virtual stream setup	206
9.2.2.2.1 Virtual stream setup	208
9.2.2.2.2 Virtual stream Premium limits	211
9.2.2.2.3 Virtual stream Limits	212
9.2.2.3 Premium mode setup	213
9.2.2.4 Fault mode setup	
9.2.2.5 Barometric pressure	
9.2.2.6 Averaging	
9.2.3 General data	
9.2.3.1 Date and time	
9.2.3.2 Timezone	
9.2.3.3 Periods setting	
9.2.3.4 User defined setup	
9.2.3.4.1 Display	
9.2.3.4.1.1 Summary display setup	
9.2.3.4.1.2 Extra summary display setup	
9.2.3.4.2 Reports	
9.2.3.4.3 Trends	
9.2.3.5 Password setup	
9.2.3.6 Reset	
9.2.3.6.1 Totals reset	
9.2.3.6.2 General reset	
9.2.3.7 Version control	
9.2.3.8 Company data	
9.2.3.9 LCD settings	
9.2.3.10 Character type	
9.2.4 Interfaces	
9.2.4.1 Serial ports	
9.2.4.2 Ethernet port	
9.2.4.3 USB	
9.2.5 Operator parameters	
9.2.5.1 Keypad & limits	
9.2.5.2 Keypad values	
9.2.6 Restore	
9.2.7 PID Control	
9.2.7.1 Operation of the PID control	

9.2.7.1.1 Single loop controller	249
9.2.7.1.2 Dual loop controller	250
9.2.7.1.2.1 Dual loop controller with outlet pressure control	250
9.2.7.1.2.2 Dual loop controller with inlet pressure control	252
9.2.7.1.2.3 Dual loop controller for bidirectional flow	254
9.2.7.2 Calculation algorithm of the controller	255
9.2.7.3 Set up the PID control	257
9.2.7.3.1 General set up	257
9.2.7.3.2 Output	258
9.2.7.3.3 Operation	259
9.2.7.3.4 Fault handling	263
9.2.7.3.5 Tuning	
9.2.7.4 Operation of the PID control	
9.2.7.4.1 Operation of single loop controller	
9.2.7.4.2 Operation of dual loop controller	
9.2.7.5 Modbus register map of the PID control parameters	
9.3 Alarms and events system	
9.3.1 I/O channel alarms	
9.3.1.1 Analog input channel (4-20 mA) alarms	
9.3.1.2 PRT/RTD (Pt100) channel alarms	
9.3.1.3 Pulse input channel (flow pulse signal) alarms	
9.3.1.4 Pulse input channel (flow frequency signal) alarms	
9.3.1.5 Pulse input channel (density frequency signal) alarms	
9.3.1.6 Analog output (4-20 mA) channel alarms	
9.3.1.7 Pulse output channel alarms	
9.3.1.8 Modbus (serial communication) channel alarms	
9.3.2 Metering stream alarms	
9.3.2.1 Calculation alarms	
9.3.3 Common alarm and status output	
9.3.3.1 Status output	
9.3.4 Alarm list	
9.3.5 Events list	
9.3.6 Download log	
9.4 Tests	
9.4.1 Tests – ANI4PT2 board	
9.4.2 Tests – ANI8 board	
9.4.3 Tests – PT4 board	
9.4.4 Tests – AODIO484 board	
9.4.5 Tests – PDIO484 board	
9.4.6 Tests – PITC4641 board	
9.4.0 Tests – FITC4041 board	
9.5.1 Rosemount 3095 calibration	
 9.6 Help 9.7 Language/Nvelv/Язык/Limba 	
10 Communication	
10.1 Serial link setup	
10.2 Ethernet link setup	
10.3 Communication device address	
10.4 Protocol implementation	
10.4.1 Implemented Modbus command codes	300

10.4.1	.1 Read multiply registers (code: 3)	
10.4.1	.2 Write multiply registers (code: 16)	
10.4.2	Calculation of CRC check sum	
10.4.3	Data types in the Modbus registers	
10.4.3	.1 8 bit binary unsigned integer	
10.4.3	.2 16 bit binary unsigned integer	
10.4.3	.3 32 bit binary signed integer	
10.4.3	.4 Floating point number	
10.5 Star	ndard Modbus register map (2 byte/register)	
10.5.1	Accessing periodic totals	
10.5.2	Accessing batch data	
10.5.3	Accessing flow meter serial test data	
10.6 Dan	iel Modbus register map (4 byte/register)	
10.6.1	Registers for system date and time modification via Modbus link	
10.6.2	Registers for totals	
10.6.3	Registers for other measured data	
10.7 Reg	ister maps of the Modbus Slave devices	
10.7.1	Register map of Caldon LEFM 380Ci ultrasonic meter	
10.7.2	Register map of Daniel ultrasonic meter (Mark III electronics)	
10.7.3	Register map of Flexim Fluxus ultrasonic meter	
10.7.4	Register map of Sick-Maihak Flowsic-600 ultrasonic meter	
10.7.5	Register map of Krohne Altosonic V12 ultrasonic meter	
10.7.6	Register map of Panametrics GC868 ultrasonic meter	
10.7.7	Register map of Instromet QSonic Uniform ultrasonic meter	
10.7.8	Register map of Instromet QSonicPlus ultrasonic meter	
10.7.9	Register map of RMA Ecosonic12 ultrasonic meter	
10.7.10	Register map of RMG USZ08 ultrasonic meter	
10.7.11	Register map of Siemens 1010GCGDN ultrasonic meter	
10.7.12	Register map of ABB NGC820X gas chromatograph	
10.7.13	Register map of ABB2 gas chromatograph	
10.7.14	Register map of Daniel Danalyzer gas chromatograph	
10.7.15	Register map of Yamatake HGC gas chromatograph	
10.7.16	Register map of Yokogawa gas chromatograph	
10.7.17	Register map of Emerson 3095FB multiparameter transmitter	
10.7.18	Register map of Krohne MFC300 mass flow meter transmitter	
10.7.19	Register map of Emerson Micromotion mass flow meter	
Annex A. Re	ports	
	plication notes for HTI4x15 I/O board	

Figures

Figure 5-1 Backplane connectors	25
Figure 6-2 Front panel	28
Figure 6-3 Menu page	30
Figure 6-4 Data page	31
Figure 6-5 Main menu page	
Figure 6-6 Main menu – Flow	34
Figure 6-7 Main menu - Parameters	37
Figure 6-8 Main menu – Alarm and events, Tests, Calibration, Help, Language	38
Figure 7-9 Fuses	40
Figure 9-10 The default summary display	44
Figure 9-11 Periodic totals	45
Figure 9-12 Flow rates	46
Figure 9-13 Cumulative totals	47
Figure 9-14 Premium totals	48
Figure 9-15 Fault totals	49
Figure 9-16 Process data menu page	50
Figure 9-17 Flow meter data for differential pressure devices (orifice, nozzle, Venturi tube)	51
Figure 9-18 Flow meter data for pulse output flow meters (turbine meter, Vortex meter, etc.)	
Figure 9-19 Flow meter data (Flowsic-600 US meter, serial communication)	
Figure 9-20 Fluid data for natural gas	
Figure 9-21 Fluid data for crude oil and refined products	
Figure 9-22 Fluid data for ethanol	
Figure 9-23 Fluid data for general liquid	
Figure 9-24 Fluid data for liquid mixture	
Figure 9-25 Fluid data for water steam	
Figure 9-26 Gas composition data for natural gas	
Figure 9-27 I/O board <i>n</i> data page for ANI8 board	
Figure 9-28 I/O board <i>n</i> data page for ANI4PT2 board	
Figure 9-29 I/O board <i>n</i> data page for PDIO484 board	
Figure 9-30 I/O board <i>n</i> data page for AODIO484 board	
Figure 9-31 Modbus signal data page	
Figure 9-32 Archive data data page	
Figure 9-33 Archive batch data page	
Figure 9-34 Modbus registers data page	
Figure 9-35 Data transfer data page	
Figure 9-36 Extra summary display	
Figure 9-37 Tank loading/unloading system with batch measurement	
Figure 9-38 Batch display for tank loading/unloading	
Figure 9-39 Batch display for pipeline interface batch	
Figure 9-40 Flow meter serial test measurement	69
Figure 9-41 Meter serial test display	
Figure 9-42 Analogue (4-20 mA) input channel data page	
Figure 9-42 Error curve data page for flow rate signal	
Figure 9-43 Error curve data page for now rate signal Figure 9-44 PRT/RTD input channel data page	
Figure 9-44 FK1/K1D input channel (signal type = flow pulse) data page	
Figure 9-46 Error curve data page (signal type = flow pulse)	
Figure 9-47 Pulse input channel (signal type = flow check pulse) data page	
Figure 9-48 Pulse input channel (signal type = flow frequency) data page	03

	96
Figure 9-49 Error curve data page (signal type = flow frequency)	
Figure 9-50 Pulse input channel (signal type = density frequency) data page	
Figure 9-51 Digital input channel (signal type = dual state) data page	
Figure 9-52 Digital input channel (signal type = pulse) data page Figure 9-53 Digital output channel (signal type = pulse) data page	
Figure 9-53 Digital output channel (signal type = pulse) data page	
Figure 9-54 Digital output channel (signal type = STR FR alarm) data page Figure 9-55 Digital output channel (signal type = STR fault alarm) data page	
Figure 9-56 Digital output channel (signal type = Analog input alarm) data page	
Figure 9-50 Digital output channel (signal type = Digital input alarm) data page	
Figure 9-57 Digital output channel (signal type = Digital input alarni) data page Figure 9-58 Digital output channel (signal type = Common alarm) data page	
Figure 9-59 Digital output channel (signal type = Common alarm) data page	
Figure 9-60 Digital output channel (signal type = Batch control) data page	
Figure 9-60 Analogue (4-20 mA) output channel data page	
Figure 9-61 HART input channel data page	
Figure 9-62 Error curve data page for flow rate signal	
Figure 9-63 Modbus channel data page	
Figure 9-64 Stream selection data page	
Figure 9-65 Natural gas data page (metric example)	
Figure 9-66 Natural gas data page (imperial example)	
Figure 9-67 Natural gas detailed gas composition menu page	
Figure 9-68 Natural gas composition selection data page	
Figure 9-69 Natural gas keypad composition data page	
Figure 9-70 Natural gas Modbus registers data page	
Figure 9-70 Natural gas limited gas composition data page	
Figure 9-72 Coke oven gas composition data page	
Figure 9-73 Blast furnace gas composition data page	
Figure 9-74 Predefined pure gas data page	
Figure 9-75 General gas data page	
Figure 9-76 Water steam data page for superheated and saturated steam	
Figure 9-77 Water data page	
Figure 9-77 Water data page Figure 9-78 Crude oil and product data page	
Figure 9-79 Ethanol data page	
Figure 9-80 General liquid data page	
Figure 9-81 Liquid mixture data page	
Figure 9-82 Orifice plate meter data page	
Figure 9-83 Nozzle data page	
Figure 9-84 Venturi tube data page	146
Figure 9-85 Segmental orifice plate data page	
Figure 9-86 V-Cone meter data page	
Figure 9-87 Compact/conditioning orifice plate data page	
Figure 9-88 Annubar data page	
Figure 9-89 Gas turbine meter, Liquid turbine meter, Vortex meter, Mass flow meter, V	
meter, Rotameter, Electromagnetic meter, CVOL flow meter, Stream data page	
Figure 9-90 Flow meter with power characteristic data page	
Figure 9-91 Stream flow meter definition in Stream setup menu	
Figure 9-92 Stream setup data page, fluid: natural gas, flow meter: orifice meter	
Figure 9-93 Stream disabling and transmitter calibration data page	
Figure 9-94 Stream setup data page, fluid: natural gas, flow meter: turbine meter	
Figure 9-95 Stream setup data page, fluid: natural gas, flow meter: ultrasonic meter	
Figure 9-96 Stream setup data page, fluid: crude oil, flow meter: liquid turbine	
	······································

	Stream setup data page, fluid: crude oil, flow meter: mass flow meter	194
0	Stream setup data page, fluid: other, flow meter: other (electrical power	
)	
Figure 9-99 1	Premium limits data page	204
Figure 9-100	Limits data page	
Figure 9-101	Virtual stream selection data page	
Figure 9-102	Virtual stream setup data page	
Figure 9-103	Virtual stream premium limits data page	211
Figure 9-104	Virtual stream limits data page	212
Figure 9-105	Premium mode setup data page	213
Figure 9-106	Fault mode setup data page	215
Figure 9-107	Barometric pressure data page	216
Figure 9-108	Averaging setup data page	217
Figure 9-109	Date and time data page	
Figure 9-110	Time zone data page	
Figure 9-111	Time periods data page	
Figure 9-112	Summary display setup data page	
Figure 9-113	Display editing data page, General display	
-	Display editing data page, Previous month display	
-	Display editing data page, Current month display	
	Extra summary display setup data page	
-	User defined report selection data page	
-	User report editing data page for User report 1 and 2	
-	User report editing data page for User reports 3 to 10	
	Password setup data page	
	Totals reset data page	
-	General reset data page	
-	Version control data page	
-	User data data page	
0	LCD settings data page in different colours	
0	Character size selection data page	
0	Serial ports data page	
Figure 9-128	Ethernet port data page	
	Operator data - limits data page	
	Keypad values data page	
	Restore data page	
0	Single variable control loop	
-	Dual loop controller with outlet pressure control	
-	Dual loop controller with inlet pressure control	
-	Dual loop controller for bidirectional flow	
-	PID control loop general setup	
	PID control loop general setup, parameter group selection	
-	PID control loop setup, output	
-	PID control loop setup, analogue output	
	PID control loop setup, operation, single loop	
	PID control loop setup, operation, dual loop	
	PID control loop setup, fault handling	
	PID control loop setup, tuning	
-	Accessing PID control operation screen	
-	PID control operation, control loop inactive screen	

Figure 9-146	PID control operation, single loop controller	266
Figure 9-147	PID control operation, dual loop controller	268
Figure 9-148	PID control operation, dual loop controller, PIC loop	268
Figure 9-149	PID control operation, dual loop controller, FIC loop	270
Figure 9-150	Tests – ANI4PT2 board data page	286
Figure 9-151	Tests – ANI8 board data page	287
Figure 9-152	Tests – PT4 board data page	288
Figure 9-153	Tests – AODIO484 board data page	288
Figure 9-154	Tests – PDIO484 board data page	289
Figure 9-155	Tests – PITC4641 board data page	290
Figure 9-156	Transmitter calibration display	291
Figure 9-157	Sensor calibration display	292
Figure 9-158	DP sensor offset calibration display	292
Figure 9-159	DP sensor offset calibration finished display	293
Figure 9-160	DP sensor slope calibration display	293
Figure 9-161	DP sensor slope calibration finished display	294
Figure 9-162	DP sensor damping display	294
	DP sensor damping finished display	
Figure 9-164	DP sensor calibration finished display	295
Figure 9-165	Calibration finished display	295
Figure 9-166	Language change display	296

Tables

Table 4-1 I/O board types	21
Table 4-2 Communication interfaces	
Table 9-3 Natural gas properties modes	122
Table 9-4 Ranges of gas mixture characteristics for compression factor calculation from o	letailed
gas composition	123
Table 9-5 Ranges of gas mixture characteristics for compression factor calculation from l	imited
set of gas composition	124
Table 9-6 Coke oven gas composition	124
Table 9-7 Blast furnace gas composition	125
Table 9-8 CTL and CPL modes, base temperature and base pressure options for liquid	
hydrocarbons	131
Table 9-9 Default values of the calorific value and CO2 emission factors	133
Table 9-10 Type of steels in GOST standards	143
Table 9-11 Unit of measurements for volume, mass and energy	159
Table 9-12 Stream data for general summary display	224
Table 9-13 Stream data for previous month summary display	224
Table 9-14 Stream data for current month summary display	225
Table 9-15 Modbus register map of the PID control parameters	273
Table 10-16 Communication device addresses	299

1 About this manual

This manual introduces the UNIFLOW-200 multifunction flow computer. It describes the installation procedure and shows how to operate the system including entering and modifying data. Basic maintenance and troubleshooting information is also provided.

The information in this manual is arranged as follows:

Section 2 – Introduction provides an overview of the UNIFLOW-200 including the list of metering standards, fluids and flow meters available in the flow computer for configuration.

Section 3 – Technical specification contains a complete list of physical, performance, and environmental specifications of the UNIFLOW-200.

Section 4 – Plug-in boards and hardware operation provides the list of I/O boards available for selection together with their I/O channel capabilities. This section consists of the short description of the hardware operation of the flow computer.

Section 5 – Installation and wiring provides instruction on installing the UNIFLOW-200. It describes the field wiring configurations.

Section 6 – Basic operation shows how to use the UNIFLOW-200. This includes keypad functions, screen displays, system initialization, display navigation, data entry, and printing reports.

Section 7 – Maintenance and troubleshooting provides maintenance and troubleshooting information, including the basic board-level test procedures.

Section 8 – Support describes the software tools provide for the convenience of operation of the UNIFLOW-200.

Section 9 – Detailed operation – The menu tree describes in depth the menu structure of the UNIFLOW-200. It guides through the steps required to setup the UNIFLOW-200 for a particular flow measurement task. It gives the full list of options available for selection in the setup procedure.

Section 10 – Alarms and events describes the full list of alarms and events that may appear in the alarm and event files.

Section 11 – Communication describes the communication capabilities of the UNIFLOW-200.

Section 12 – PID Control describes the operation of the PID control implemented in UNIFLOW-200.

Annex A – Reports gives examples of the periodic reports available in the UNIFLOW-200 for uploading and printing.

Annex B – Drawings includes the drawings.

Annex C – Application note for HTI4x15 I/O board

2 Introduction

UNIFLOW-200 multifunction flow computer is designed to measure flow of fluids flowing in closed conduits (gas, liquid, water and steam) and open channel (water). The flow computer performs the data processing and displaying function in the flow metering system. The flow computer calculates the volume at line and at base conditions, mass and energy flow rate of the fluid. It totalizes the volume at line and at base conditions, mass and energy for the accounting periods.

The flow computer was designed to provide cost effective solution for multi stream applications. Benefits of the flow computer allowing remarkable cost reduction comparing to the single stream flow computers:

- sharing of the transmitters between metering streams is possible;
- PRT sensors can be connected directly to the flow computer; no temperature transmitter is required;
- power supply output for transmitters is provided; no separate power supply units required;
- additional I/O modules expand the metering capability of the flow computer with moderated additional cost only;
- flexible communication capabilities allows easy system integration.

The manufacturer Process Control Kft. provides support for the end users to integrate the flow computer into metering systems and into data acquisition and process visualization systems. The manufacturer also can provide complete solution for flow metering task, including the design, manufacturing and implementation if required.

Flow meters that can be selected in the flow computer and the standards related

- pressure differential devices;
 - orifice plate, nozzle, Venturi tube (ISO 5167, edition 1991, 1998 or 2003, GOST 8.563-97, GOST 8.586-2005, AGA3 edition 1990 or 2012)
 - V-Cone meter (according to manufacturer's method);
 - Annubar (according to manufacturer's method);
 - segmental orifice plate;
 - conditioning orifice plate.
- flow meters with linear output signal;
 - turbine meter;
 - Vortex meter;
 - electromagnetic flow meter;
 - ultrasonic flow meter;
 - mass flow meter;
 - volume at base conditions flow meter.
- flow meters with nonlinear output signal;
 - rotameter;
 - flow meter with power characteristic.

Fluids that can be selected in the flow computer together with fluid properties calculation

- hydrocarbon gas mixtures (natural gas, coke oven gas, blast furnace gas);
- pure gases (air, nitrogen, oxygen, argon, carbon-monoxide, ethylene, ammonia, propane, general gas)
- steam and hot water as energy supply fluids;
- liquids (crude oil, refined products, lubricating oil, NGL & LPG, UGC, SHL, WFLH, ethanol, general liquid, liquid mixture);

Standards and procedures for fluid properties calculation

- hydrocarbon mixtures
 - compression factor
 - AGA8 (1985 and 1992) detailed and gross methods; AGA NX19;
 - GERG88;
 - o GOST 30319-96 (GERG91mod, NX19mod, VNIC SMV), GOST 30319-2015.
 - calorific values, relative density and base density
 - ISO 6976 (1995 and 2016), GOST 30319-96, AGA5, GPA 2172-09.
 - dynamic viscosity
 - o GOST 30319-96, GOST 30319-2015
 - isentropic exponent ISO 20765-1, GOST 30319-96, GOST 30319-2015
 - velocity of sound ISO 20765-1, GOST 30319-96, GOST 30319-2015
 - Joule-Thomson coefficient
 - o ISO 20765-1, ISO TR 9464
 - gas composition
 - o read on-line from a gas chromatograph,
 - o downloaded from a supervisory system,
 - o fixed value.
- pure gases
 - compression factor, dynamic viscosity and isentropic exponent
- crude oil and refined products
 - temperature volume correction factors
 - o ASTM D1250-80/API 2540 Table 23/24A,B,C, Table 53/54A,B,C
 - o MPMS Chapter 11.1-2004 (2007)
 - MPMS Chapter 11.2.4-2007 (Tables 23/24E, 53/54E, 59/60E, GPA TP-27)
 - STO Gazprom 5.9 Annex B.1, B.2, B.3
 - pressure volume correction factors
 - API MPMS Chapter 11.2.1M and 11.2.2M
 - API MPMS Chapter 11.2.1 and 11.2.2
 - STO Gazprom 5.9 Annex B.1, B.2, B.3
- steam and water
 - physical properties
 - Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam (IAPWS-IF97)
- ethanol

- physical properties
 - Council Directive 76/766/EEC
 - Horst Bettin, Frank Spieweck: A Revised Formula for the Calculation of Alcoholometric Tables. PTB-Mitteilungen 100 6/90

UNIFLOW-200 is a Gas-volume electronic conversion device complying with EN 12405 and OIML R140. UNIFLOW-200 is approved as Calculator for Dynamic measuring system for liquids other then water according to OIML R 117-1.

UNIFLOW-200 calculates the CO2 emission for gaseous and liquid fuels according to 601/2012/EU and IPCC 1996.

UNIFLOW-200 is capable to provide flow computer function up to 8 metering streams. In other words: in one UNIFLOW-200 we have 8 independent flow computers.

In general each metering stream has the input signals as follows:

- flow meter signal
- signals for correction (pressure, temperature, density, gas composition, etc.)

Depending on the application one single signal for correction can be assigned to several metering streams. If here is no transmitter for a particular signal for correction the flow computer will use a fixed value for that signal.

In case of signal failure the flow computer revert to the fixed value of that signal and this value will be used in the flow calculation.

Beside the 8 physical metering streams the flow computer is capable to provide 4 virtual metering streams. The virtual metering streams are to produce data from the flow rates of the physical metering streams. The virtual streams can be configured to give sum, difference, product or ratio (or their combination) of the physical streams. It can be used to setup a simple energy balance for a small group of consumers.

The accuracy of the flow measurement is a key issue. UNIFLOW-200 high precision inputs, the implementation of the latest editions of the flow metering standards provide minimum contribution of the flow computer in the uncertainty budget of the metering system.

Utilization of the digital communication with the flow meters and transmitters can further reduce the overall uncertainty of the measurement.

3 Technical specification

3.1 General features

- high capacity 32-bits microprocessor
- modular design, up to 5 I/O boards
- up to 8 physical metering streams
- up to 4 virtual metering streams
- flow meters: orifice plate, nozzle, Venturi tube, segmental orifice plate, Annubar, V-Cone meter, turbine meter, Vortex meter, ultrasonic meter, electromagnetic meter, mass flow meter, rotameter, meter with power characteristic
- fluids: gas, liquid and water steam
- mode of operation: metering mode, configuration mode, test mode
- configuration: from keypad, via Ethernet link
- password protected parameters, audit trial log
- parameters and totals integrity protection: non volatile memory
- archiving: hourly, shift, daily, multi-day and monthly totals and averages for 400 days
- operator interface: alphanumerical and graphical display
- RS232, RS485, RS422 serial links, 10/100 Ethernet and USB interface
- stream independent signal processing
- high reliability, no battery, no potentiometers
- support: U200ToolBox configuration and remote archive uploader software

3.2 Technical data

Analog inputs

- symmetrical inputs with galvanic isolation
- input range 0-20 mA / 4-20 mA (operator selectable)
- accuracy +/- 0,02 %
- potential drop on input 5,4 V max. per 20mA
 - 20mA (100 Ω + protection)
- equivalent input impedance 270 ohm
- (100 Ω + protection)
- potential diff. among inputs 50 V max.

PRT/RTD inputs

- sensor type 100, 50, 500 or 1000 ohms PRT standard or individually calibrated
- connection
 4-wire
- accuracy +/- 0,03 °C
- maximum loop resistance 3 kohms
- excitation current 1 mA

Pulse/frequency inputs

•

- Signal type (operator selectable) •
 - open collector, potencial-free contact powered from UNIFLOW-200, 12 V/3 mA
 - active signal (externally powered) square, unipolar
 - 5 V max. 5 V, signal level change min. 2 V
 - 15 V max. 15 V, signal level change min. 5 V •
 - NAMUR
 - powered from UNIFLOW-200, 8,2 V,
 - input inpedance 1 k Ω ,
 - signal level change, min. 1,5 mA.
- frequency range
- signal form

signal counting

Uncertainty of frequency measurement

Digital inputs

- potential-free contacts, open collector inputs (transistor) or 24 VDC inputs accepted and used • as:
 - static inputs, or •
 - pulse inputs (frequency: 100 Hz max., 50 % fill in ratio) •
- internal power supply for potential-free inputs: 12 VDC, 6,8 kohm •

Analog outputs

- output channels with individual galvanic isolation •
- current range 0-20 mA / 4-20 mA (operator selectable) •
- resolution 12 bits •
- 500 ohm max. load

Digital outputs

- galvanically isolated open collector (transistor), overvoltage- and overcurrent-protected outputs
- type of outputs •
 - o dual state static signal
 - o flow rate limits
 - o analog input limits
 - o repeating dual state input signal with negation/delay
 - o common alarm output
 - pulse signal
 - pulse output proportional to totals
 - o time base
 - Max. frequency: 100 Hz,
 - On/off time duration min. 10 msec
- 100 mA, 40 Vdc max. load

- square, unipolar
- 0.001 % max.

0...10000 Hz

without loss of pulses

Digital communication

•

- serial links
 - overvoltage- and overcurrent-protected mode •
 - RS232/RS485/RS422 (operator selectable)
 - baud rate 1200...38400 baud (operator selectable) •
 - Modbus ASCII and RTU protocol •
 - maximum cable length RS232 15 m •
 - RS485/RS4222 1200 m
- 10/100 Ehernet protocol: Modbus TCP
- USB 1.1 port standard-A receptacle, for data saving to flash drive

Hot/stand-by interface

- flow computer status output (to stand-by unit) • change-over voltage-free contact, maximum load: 100 V, 100 mA
 - operating closed contact (NO)
 - fault opened contact (NC)
- flow computer status input (from hot unit) potential-free contact, open collector inputs (transistor) or 24 VDC input
 - sensing input sense •

Keyboard

foil protected membrane keyboard •

Display

3,5" QVGA (320 x 240) backlit TFT color LCD •

Performance specification

Maximum Permissible Error (MPE)

- +/- 0,03 % OIML R117, Class 0,3
- +/- 0,2 % EN 12405
- +/- 0,05 % OIML R140

Operating conditions

•

- operating temperature -10...+60 °C •
- operating humidity 10...90 % non-condensing •
 - EMC complies with EU EMC regulation
- storage temperature -25...+70 °C •

Power requirements

- power supply 230 VAC +10 %/-15 %, 50 Hz +/-3 Hz
 - 24 VDC nominal, 20 VDC ... 35 VDC
- power consumption 25 VA max. (depending on the number and type of IO boards fitted)
- transmitter power (output) 1 x 24 Vdc, 200 mA max.

Case and mounting

Panel mounted version

- front panel 196 mm W x 110 mm H
- case depth 272 mm
- minimum cabinet depth 320 mm
- panel cutout 186 mm W x 91 mm H
- weight 4.3 kg
- protection IP20
- prepared for sealing
- plug-in connectors
 - 230 V power supply IEC60320 C14 chassis plug
 - o 24 VDC plug-in screw terminal
 - o input/output signals 25-pin DSUB connector (female)
 - serial links 9-pin DSUB connector (male)
 - o 10/100 ethernet RJ45 UTP
 - o USB host and device Standard-A receptacle
 - o flow computer status plug-in screw terminal

Protection against electrical shock Class I (EN 61140)

Certificates

- EC-type examination certificate (including EMC conformance):
 - Government Office of the Capital City Budapest, Metrological and Technical Supervisory Department, Section of Mechanical Measurements, Hungary

TH-8543/6/2018 (EN 12405-1:2005+A2:2010)

TH-8614/6/2013 (OIML R 117 Class 0,3)

3.3 Accessories

List of accessories supplied with UNIFLOW-200

25-pin DSUB connector (male)	15*
9-pin DSUB connector (female)	1 3**
230 V power cord (2 meters)	1
Fastener for mounting	4
Fastener screw	4
Fuse	1 set
Instruction manual	1

* Depends on the number of I/O boards fitted

** Depends on the number of serial links fitted

4 Plug-in boards and hardware operation

The modular design of the flow computer allows flexible combination of the I/O boards to suit different applications.

The flow computer consists of the modules as listed below:

- mother board part of the base unit
 front panel with keypad and display part of the base unit
- power supply unit part of the base unit
- CPU board part of the base unit
- I/O boards application dependent
- serial extension module application dependent

The maximum number of I/O boards that can be installed is five. The maximum number of metering streams (8) can be defined only if the total number of input and output channels is covered by the properly selected five I/O boards. Otherwise more then one UNIFLOW-200 should be installed.

The base unit provides communication interfaces as listed below:

- serial link (RS232/RS485/RS422) 1
- USB host 1
 10/100 Ethernet 1

4.1 Plug-in boards

The available I/O boards listed in the table below:

I/O board name	Number of	Signal	Remark
	channels		
ANI8	8	4-20 (0-20) mA current input	selectable
	1	24 VDC/200 mA transmitter power	
ANI4PT2	4	4-20 (0-20) mA current input	selectable
	2	PRT/RTD input	4-wire connection
	1	24 VDC/200 mA transmitter power	
PT4	4	PRT/RTD input	4-wire connection
PDIO484	4	pulse/frequency input	high level (active or passive)
	8	digital (contact) input	active or passive, stat. or pulse
	4	digital (open collector) output	static or pulse
AODIO484	4	4-20 (0-20) mA current output	selectable
	8	digital (contact) input	active or passive, stat. or pulse
	4	digital (open collector) output	static or pulse
PITC4641	4	pulse/frequency input	high level (active or passive)
	6	digital (contact) input	active or passive, stat. or pulse
	4	digital (open collector) output	static or pulse
	1	raw pulse output	to prover computer
HTI4x15	60	HART communication input in	The loops are isolated if
		multidrop or broadcast mode	external power supply is used
		4 independent loops, 15 PV per loops	

Table 4-1 I/O board types

The available communication interfaces listed in the table below:

Communication module	Туре	Remark
Com1 port	universal serial port	part of the base unit on the CPU board RS232/RS485/RS422 – selectable
SE module	serial extension module	additional com2 and com3 ports RS232/RS485/RS422 – selectable
10/100 port	10/100 baseT Ethernet interface	part of the base unit on the CPU board
USP port	USB 1.1 host	part of the base unit on the CPU board

Table 4-2 Communication interfaces

4.2 Hardware operation

The flow computer is built on the basis of the ATMEL ATM9200...ARM microprocessor.

The application software of the flow computer runs under the UX200 operating system.

The operating system and the application software are stored in the compact flash memory (PCMCIA device). The boot program is stored in data flash memory. The calculation data are saved periodically into I²C flash. All the parameters, calculation data and archive data are stored in flash memory so that the data are retained in case of power failure.

The working memory of the flow computer is 32 MB SDRAM.

The real time clock chip (DALLAS DS12887) provides the time and date for the operation. It provides also 500 ms interrupts for the processor to synchronize the calculation cycles. The clock chip has its own built-in lithium battery providing independent operation from the external power.

The human – machine interface of the flow computer is the 320x240 dots backlit color LCD and the foil protected membrane keyboard.

There are three LEDs on the front panel.

The POWER LED indicates the presence of power supply.

The RUN LED indicates the normal operation of the flow computer.

The ALARM LED indicates the alarm status.

The Com1, Com2, Com3 serial ports provide asynchronous communication links to external devices. All of them can be configured as RS23 or RS485 or RS422 port. The parameters of the ports (baud rate, data bits, stop bits, parity) are operator selectable.

The 10/100 BaseT Ethernet port allows to connect the flow computer to the LAN or WAN. The parameters of the Ethernet port (IP address, subnet mask, default gateway) are operator selectable. The Ethernet port can be configured to provide DHCP function.

The USB port is provided for easy transfer of the archive data files to flash drive.

The flow computer can accommodate up to five I/O boards for field signal connection. It is recommended to install the I/O boards in the numbered slots starting from one. The type of the I/O boards is recognized automatically by the CPU board.

The status of the flow computer (normal operation or in error) is signalled with a dual state double pole voltage free contact. The state of the contact and the state of the RUN LED are synchronized. See details in the section 9.3.3

The power supply unit provides two independent groups of voltages for the flow computer operation. The voltages are isolated by DC/DC converters for high noise immunity. The voltages are:

- TTL level voltage
 - +5 V (Vcc) to supply the digital circuits
 - prediction of power failure to provide
 - smooth program stopping and
 - finishing the data saving process
- voltage for analogue circuits
 - +24 V for transmitter power supply
 - +/-15 V to supply the analogue circuits

The I/O boards include also DC/DC converters to isolate the field input signals and the communication interfaces from the internal circuits.

The flow computer can be powered from:

- 230 V 50 Hz or
- 24 V DC

power source. Both power sources can be connected simultaneously. If power exists on both power inputs then the flow computer takes power from the 230 V 50 Hz inputs. If the power fails on this input then the flow computer automatically switch to the 24 VDC power input. The power switch over will not affect the operation of the flow computer.

To assure high reliability and low maintenance no potentiometers and no batteries are installed in the flow computer.

5 Installation, wiring and start-up

UNIFLOW-200 flow computer is designed for panel mounting. Its outer case is made of painted welded steel list to provide magnetic screening.

The mechanical structure of the flow computer is constructed in such a way that after loosing the two fixing screws on the back side of the unit the complete internal can be pulled out from the front. The terminals and the sockets for the signal connections and the fuse holders are located on the backplane of the unit.

The base unit consists of 4 PCBs, the mother board, the front panel, the power supply and the CPU. The front panel connects to the mother board with flat ribbon cable. The CPU board and the power supply are connected to the mother board with multi-pin sockets. There are 5 off 64-pin sockets on the mother board to accommodate the I/O boards for field signals. The field signals are connected to the 25-pin DSUB sockets located at the rear edge of the I/O boards.

5.1 Installation

Installation of the UNIFLOW-200 must conform to all applicable local codes and regulations. All installation procedures should be in accordance with normal practices of good workmanship.

The UNIFLOW-200 panel mount is designed for use within the control room and should be placed in a position that provides ease of use, comfort, and safety for operators and maintenance personnel. The optimum height for viewing and using the display and keypad is at operator eye level.

CAUTION

Where one or more units are installed in a confined space or with other heat producing equipment, special attention should be given to the combined heating effect. This combined heat could increase the environmental temperature beyond its acceptable threshold impacting performance.

Prepare the requested cut out in the panel for mounting. Refer to the drawing in the Annex B. Panel thickness should be at least 3 mm to prevent distortion.

Carefully slide the UNIFLOW-200 into the cut out. Secure the unit in the panel by means of the four fastener supplied with the unit.

5.2 Wiring

All local wiring practices and regulations should be observed performing the wiring.

The connectors and terminals accepting external wiring are located on the backplane of the flow computer as shown on the figure below.

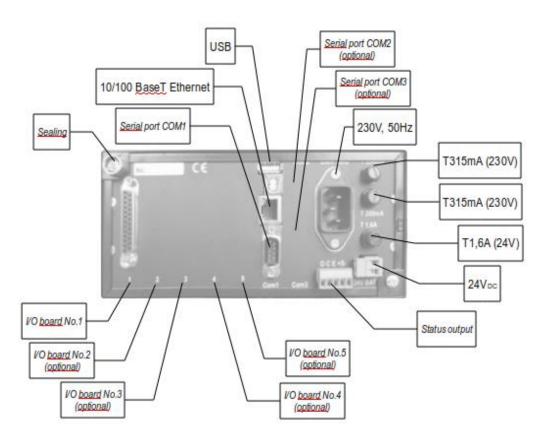


Figure 5-1 Backplane connectors

Power supply

Two different power supply inputs are available on the UNIFLOW-200. Both power supply input can be connected at the same time.

230 V 50 Hz power supply is connected via IEC60320 C14 chassis plug.

CAUTION

UNIFLOW-200 shall be connected to the power supply system with protective ground.

24 VDC power supply connection is made by a plug-in screw terminal. The terminal is labeled 24 V BAT.

Serial ports

Three communication ports are provided on the backplane of the flow computer.

The ports use 9-pin DSUB male connectors and are labeled COM1, COM2 and COM3.

The pin assignments of the connectors in case of RS232/RS485/RS422 configuration see in the Appendix B.

Ethernet port

This port is for high-speed communications using Ethernet local area network architecture. The speed of data transfer is 10/100 Mb/sec using a 10baseT twisted pair. The port uses an RJ45 connector.

USB port

USB port is for file transfer from the flow computer to flash drive device. The port uses a standard-A receptacle.

Status output and Sense input

A single pole, double throw relay with Normally Open or Normally Closed terminals provides the status (operating and error) of the flow computer. A flow computer failure causes the relay to de-energize. Connection is made by plug-in screw terminals.

Contact is rated at 100 mA, 100 volts and is a Form "C" contact.

The terminals are marked:

- O operating
- C common
- E fault

The Sense input accepts potential-free contact, open collector inputs (transistor) or 24 VDC input from other flow computer working in pair in hot/stand-by mode.

- The terminals are marked:
 - +S + signal
 - S- signal

I/O board connectors

The backplane has one 25-pin female D-type connectors for field wiring for each I/O board. See the pin assignment of the connector for each type of the boards in the Annex B

5.3 Start-up

After the UNIFLOW-200 has been wired for power and external devices, it may be activated by energizing the external power supply. When power is applied, the unit displays the

message Load in progress... Please be patient.

After about 1 minute the operating system of the unit starts testing the internal parameters and displays messages indicating whether the parameters pass or fail the test. If some of the parameters are missed or damaged the default parameters are activated.

After the tests the blinking message **Restarted!** appears on the display together with the date and time of the restart and with the current date and time.

There is also a message informing operator if the test of parameters was successful or the test failed and default parameters were activated.

After pressing any key the main menu appears on the display.

If after the start-up the unit displays messages **Parameters are damaged!** and **Check parameters!** then it is necessary to enter the Parameters menu and set the parameters required for the particular application. Before setting up the proper parameters the unit will not start the normal operation, i.e. will not start to perform the measurement.

See the setup procedure in the Section 9.

If after the start-up the unit displays messages **Parameters are OK!** then it starts the normal operation, i.e. it will perform the measurement even if the blinking message Restarted! is seen on the display.

CAUTION

If the operating conditions and the parameters of the application were not provided to the manufacturer then UNIFLOW-200 is supplied from the factory with all the input and output channels inactive and all the metering streams are disabled.

It is part of the start-up procedure to setup the unit for the particular application. See the setup procedure in the Section 9.

5.4 Start and stop metering streams

Once the metering stream is properly configured it starts the flow calculation and never stops.

When operator modifies any parameter and leaves the Parameters menu the flow calculation is interrupted for few calculation periods while the new parameters are checked.

The metering stream operation can be suspended if in the parameter setup the fluid or the flow meter set to None (see section 9).

6 Basic operation

The operation of the UNIFLOW-200 is accomplished through an operator interface comprising an LCD display and a keypad. The layout of the front panel is shown in figure below.

	Ľ	'ower Run	Alarm	
CVOL flowrate [m ³ /h] 6 822.1079 ENGY flowrate	8 ^{abc}	9 ^{def}	Esc	
[GJ/h] 327.8373 Gauge pressure 4 ^{ghi}	5 ^{jkt}	6 ^{mno}	Clear	
[bar] 5.9869	2 ^{tuv}	3 ^{wxyz}	Alt	
F1 F2 F3 F4 0 ⁻	0	+*/ -	Enter	

Figure 6-2 Front panel

6.1 Keypad

There are 20 keys located on the keypad grouped into 3 functional groups.

6.1.1 Numeric keys

The numeric keys offer the full number set (0 - 9), decimal point (.), and a minus (-) key. They used to enter or change data.

Each numeric key has secondary characters assigned to them.

They are as follows:

Numeric 1 to 8 – alphabetic letters from A to Z and from A to Я (Cyrillic letters)

Numeric 0 – space ()

Numeric 7 – Exponent (Exp)

Decimal point (.) – opening (() and closing ()) bracket

Minus sign (-) – plus (+), multiply (*) and divide (/) sign

The secondary characters activated by repeated key press.

For example pressing the key 9 repeatedly the characters in the input field appears in the following order: 9 D E F É d e f é \square E \boxplus 3 \square e # 3. Both uppercase and lowercase letters can be entered this way.

Letters and special characters are used to

- enter text information (e. g. the name of the metering stream)
- enter equation in virtual stream definition (see Section 9.)

Exponent key is used to enter quantities in scientific notation. The exponent field is activated by pressing Alt key then Exp key. Letter "e" appears in the input field indicating that the exponent part of the number to be entered.

Exponent key available only for the parameters which value in decimal notation exceeds the space available in the input fields.

6.1.2 Editing keys

Esc key

- pressing Esc key while editing any data entry field causes the editing stopped, the entered numbers or the selection mode is ignored and the original value of the field is restored;
- pressing Esc key while data page is displayed (and no any data entry field is being edited) causes exit from data page to the parent menu. All the modifications done after the last pressing of the Save key will be ignored and the original values of the data fields will be restored.

Clear key

- pressing Clear key while editing any data entry field causes the last character entered is cleared. Alt key
 - Alt key is used in conjunction with the Exp key to enter number in exponential format.

Enter key

 Enter key is used to finish the data entry and data selection in the data entry fields. Pressing Enter do not causes the entered data is activated. To activate the data the Save key shall be pressed and the Parameters menu item shall be left. Exiting from parameter menu the flow computer shows message Parameter update in progress. The modified parameters will be used in flow calculation after the message disappears.

6.1.3 Function keys

There are four function keys located below the display and marked with F1, F2, F3 and F4.

The function keys have no one single particular function. They are multi-functional keys. The valid functions of the keys at each particular display page are indicated in the bottom line of the display.

The function keys are to navigate in the menu tree and select parameters or data items to view, change or save.

The functions of the keys are as follows:

- ⇐ left arrow
 - move to the previous (upper) level of menu tree or return to the parent menu from the data page
- ⇒ right arrow
 - move to the next (lower) level of menu tree
 - enter into data page if there is no more menu tree level
- û up arrow
 - move by one item up in the menu list (on the menu page) or data list (on data page)
- down arrow
 down arrow
 down arrow
 down
 down
 - move by one item down in the menu list (on the menu page) or data list (on data page)
- 1 up-down arrow
 - scroll through the menu items or data pages. After the last menu item or data page the first one appears.
- ⇔ left-right arrow

• move to the next data entry field. After the last field the cursor jumps to the first field.

Save

• save the data on the data page displayed and return to the parent menu

Change

- in the numeric entry field: clears the content of the field and enters the field for editing
- in the selection entry field: pressing Change key repeatedly the option list for the selection scrolls in the selection field. Press Enter when the desired option is displayed to make your selection.

Menu

• leaves the data page and return to the parent menu

OK

• confirm the selection of the highlighted item

6.2 Display

The 320 x 240 dots backlit TFT color LCD display offers 14 lines of information displayed as alphanumeric and graphical characters.

There are two different types of display pages available in the UNIFLOW-200:

• menu page

The left pane of the menu page shows the menu tree levels the operator went through to arrive to the current position.

The right pane shows the available menu items for selection. Press \hat{T} and \hat{V} key to highlight the desired menu item. Press \Rightarrow key to enter the next menu level or to data page. Press \Leftrightarrow to return the previous menu level.

The figure below shows an example of the menu page

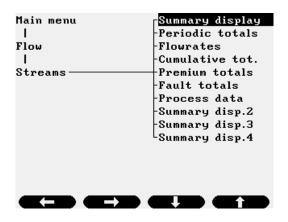


Figure 6-3 Menu page

• data page

The data page is a list of parameters. The description, the value and the unit of measurement of the parameters are shown.

Press \hat{U} and \hat{V} key to highlight the desired data item.

Press Change key to start editing the numeric entry field.

Press Change key repeatedly to scroll through the available options of the selection entry field.

Press OK key to confirm the numeric value entered or the selection highlighted.

Press Save key to save the new value of the parameter and return to the parent menu.

Press Esc key if you want to discard the editing you have done and return to the parent menu. The figure below shows an example of the data page.

01.Str. ASZK1	
Fluid	natural gas
Base temperature	15 °C
Base pressure	1.01325 bar
Combust.ref.temp.	15 °C
Chromat. polling	no
Gas composition	detailed
Comp.downl.timeout	1800 sec
Compr.fact.mode	AGA8/92DC
Line density mode	PTZ
Base density mode	IS06976:2015
Rel. density mode	IS06976:2015
Inf.cal.val. mode	IS06976:2015
Sup.cal.val. mode	IS06976:2015
Save Change	

Figure 6-4 Data page

NOTE

Each page consists of 15 lines.

First line shows the stream identifier string.

Last line shows the function pictogram of the F1 - F4 function keys.

13 data lines can be seen on the screen. If more then 13 data items to be displayed scroll through the data lines with \hat{u} and ϑ keys.

6.2.1 Navigating the display

From the main menu select the item you require by pressing \hat{U} and \hat{V} keys. Press \Rightarrow key to enter the next menu level. Select the required sub-menu item by pressing \hat{U} and \hat{V} keys and press \Rightarrow key to enter the next sub-menu level. Repeating this procedure you arrive to the required data page. Navigating in the menu tree you can see the menu and sub-menu items passed on the left pane of the display. Pressing \Leftrightarrow key returns to the previous menu level.

6.3 Security levels

Data are protected with password in the flow computer.

There are three security levels. Each of them has its own password. Depending on the security level the operator logged in he/she has the right to modify different groups of parameters.

At Engineer level both the Operator and Engineer password can be modified.

CAUTION

The flow computer shipped with empty password list. It means that pressing Enter when the flow computer requires password you log in at Engineering level allowing modification all the parameters.

Set your own Operator and Engineering level password to protect the parameters against undesired modification. The procedure for password setting is described in Section 9.

Remember the password you entered. If you forget your password you will have to ask the assistance of the manufacturer or you have to return the unit to the manufacturer.

Guest level

At Guest level all the parameters can be reviewed at the display but no any modification is allowed.

The default password for Guest level is the Enter key. When the flow computer prompt for the password just press Enter key without entering any codes.

The Guest level password can not be altered.

Operator level

At Operator level only the parameters listed in the Operator parameters submenu are available for modification. These parameters include the transmitter ranges, the high and low alarm limits and the keypad values.

The default password for the Operator level is Enter (no password is set).

Engineer level

At Engineer level all the parameters are available for editing.

The default password for the Engineer level is Enter (no password is set).

IMPORTANT

Once the operator logged in at Operator or Engineer level and the inactivity period (i.e. no any key is pressed) exceeds 2 minutes the flow computer automatically logs out the operator. This is to prevent accidental leaving the flow computer in the state where the parameters can be altered.

6.4 The menu system

The main menu consists of items as shown below.

-Parameters -Alarms & events -Tests -Calibration -Help -Language
-Tests -Calibration -Help
-Calibration -Help
-Help
Language

Figure 6-5 Main menu page

The menu items Flow, Alarms & events, Help and language selection (Magyar/English/Русский/Română) are accessible without password.

In Flow menu the metering data are shown grouped into different submenus.

In Alarms & events menu, the list of unacknowledged and acknowledged alarms can be seen. The alarm log, event log and the downloaded gas composition log are accessible here also.

The menu items Parameters and Tests require password to enter for accessing.

The menu item Calibration is reserved for the manufacturer and for the authority calibrating the flow computer. It is accessible with special password only.

The menu item Language allows selecting the language the flow computer communicates with. Available languages are Magyar (Hungarian), English, Русский (Russian), Român (Romanian). Changing the language will change the language of the display, the alarm messages, etc. UNIFLOW-200 is a true multilingual flow computer.

The menu structure (the menu tree) shown on the figures below.

Main menu	Submenu 1	Submenu 2	Submenu 3	Submenu 4
Flow	Streams	Summary display	data page (1.1.1)	
		Periodic totals	data page (1.1.2)	
		Flowrates	data page (1.1.3)	1
		Cumulative totals	data page (1.1.4)	1
		Premium totals	data page (1.1.5)	1
		Fault totals	data page (1.1.6)	1
		Process data	Flow meter data	data page (1.1.7.1)
			Fluid data	data page (1.1.7.2)
			(*)	
		Summary display 2	data page (1.1.8)	
		Summary display 3	data page (1.1.9)	
		Summary display 4	data page (1.1.10)	
	Plant I/O	I/O board 1	data page (1.2.1)	
		I/O board 2	data page (1.2.2)	
		I/O board 3	data page (1.2.3)	
		I/O board 4	data page (1.2.4)	
		I/O board 5	data page (1.2.5)	
		Modbus signals	data page (1.2.6)	
	Archive data	Archived periodic totals	data page (1.3.1)	
		Archived batch totals	data page (1.3.2)	
	Modbus regs	data page (1.4)		
	Data transfer	data page (1.5)		_
	Extra sum. display	Extra sum. disp. 1	data page (1.6.1)	
		Extra sum. disp. 2	data page (1.6.2)	
		Extra sum. large. 1	data page (1.6.3)	
		Extra sum. large 2	data page (1.6.4)	
	Batches	Tank loading	data page (1.7.1)	
		Pipeline interface	data page (1.7.2)	
	Meter serial test	data page (1.8)		_
	PID	PID1	data page (1.9.1)(**)	
		PID2	PIC control loop	data page (1.9.2.1)(***)
			FIC control loop	data page (1.9.2.2) (***)
		PID8		

(*) Depending on the selected flow meter and the fluid more data pages may exist.
 (**) In case of single loop
 (***) In case of dual loop

Figure 6-6 Main menu – Flow

Main menu – Parameters

Main menu	Submenu 1	Submenu 2	Submenu 3	Submenu 4
Parameters	IO signals	IO board 1	1. channel	data page (2.1.1.1)
			2. channel	data page (2.1.1.2)
			(*)	
			n. channel	data page (2.1.1.n)
		IO board 2	1. channel	data page (2.2.1.1)
			2. channel	data page (2.2.1.2)
			(*)	
			n. channel	data page (2.2.1.n)
		IO board 3	1. channel	data page (2.3.1.1)
			2. channel	data page (2.3.1.2)
			(*)	
			n. channel	data page (2.3.1.n)
		IO board 4	1. channel	data page (2.4.1.1)
			2. channel	data page (2.4.1.2)
			(*)	
			n. channel	data page (2.4.1.n)
		IO board 5	1. channel	data page (2.5.1.1)
			2. channel	data page (2.5.1.2)
			(*)	
			n. channel	data page (2.5.1.n)
		Modbus signal	1. channel	data page (2.6.1.1)
			2. channel	data page (2.6.1.2)
			(*)	
			n. channel	data page (2.6.1.n)

UNIFLOW-200_Instruction_manual_rev05e_EN_2020_04

(Main menu - Parameters continued)

ain menu	Submenu 1	Submenu 4	Submenu 5	Submenu 6	Submenu 7
rameters	Streams				
	Submenu 2				
	Physical stream				
	Submenu 3				
	Stream 1.				
		Fluid	Hydrocarbon mixt.	Natural gas	data page (2.2.1.n.1.1.1
				Coke oven gas	data page (2.2.1.n.1.1.2
				Blast furnace gas	data page (2.2.1.n.1.1.3
			Pure gases	Air	data page (2.2.1.n.1.2.1
				Nitrogen	data page (2.2.1.n.1.2.2
				Oxygen	data page (2.2.1.n.1.2.3
				Argon	data page (2.2.1.n.1.2.4
				Carbon-dioxide	data page (2.2.1.n.1.2.5
				Hydrogen	data page (2.2.1.n.1.2.6
				Carbon-monoxide	data page (2.2.1.n.1.2.7
				Ethylen	data page (2.2.1.n.1.2.8
				Ammonia	data page (2.2.1.n.1.2.9
				Propane	data page (2.2.1.n.1.2.1
				General gas	data page (2.2.1.n.1.2.7
			Water steam	data page (2.2.1.n.1.3)	
			Water	data page (2.2.1.n.1.4)	
			Liquid	Crude oil & product	data page (2.2.1.n.1.5.1
				Ethanol	data page (2.2.1.n.1.5.2
				General liquid	data page (2.2.1.n.1.5.3
			Mara	Liquid mixture	data page (2.2.1.n.1.5.4
			None		
		Flow motor	Other	Orifice plate	data mara (0.0.1 m.0.1 /
		Flow meter	Diff. press. dev.	Orifice plate Nozzle	data page (2.2.1.n.2.1.1
				Venturi tube	data page (2.2.1.n.2.1.2
				Segm. orif. plate	data page (2.2.1.n.2.1.3 data page (2.2.1.n.2.1.4
				V-Cone meter	data page (2.2.1.n.2.1.2 data page (2.2.1.n.2.1.5
				Compact orifice	data page (2.2.1.n.2.1.6
			Annubar	data page (2.2.1.n.2.2)	uala paye (2.2.1.11.2.1.0
			Turbine meter	Gas turbine	data page (2.2.1.n.2.3.2
				Liquid turbine	data page (2.2.1.n.2.3.2
			Vortex meter	data page (2.2.1.n.2.4)	
			Mass flow meter	data page (2.2.1.n.2.5)	
			Ultrasonic meter	data page (2.2.1.n.2.6)	
			Rotameter	data page (2.2.1.n.2.7)	
			El. magnet. meter	data page (2.2.1.n.2.8)	
			CVOL flow meter	data page (2.2.1.n.2.9)	
			Power char. meter	data page (2.2.1.n.2.10)	
			None		-
			Other		
			Stream	data page (2.2.1.n.2.13)	
					-
		Stream setup	data page (2.2.1 n.3)		
		Stream setup Premium limits	data page (2.2.1.n.3) data page (2.2.1.n.4)		

UNIFLOW-200_Instruction_manual_rev05e_EN_2020_04

(Main menu - Parameters continued)

Main menu	Submenu 1	Submenu 2	Submenu 3	Submenu 4	Submenu 5
Parameters		Virtual stream	Stream 9	Stream setup	data page (2.2.2.m.1)
				Premium limits	data page (2.2.2.m.1)
				Limits	data page (2.2.2.m.1)
			Stream 10., 12. (***)		
		Prem. mode setup	data page (2.2.3)		
		Fault mode setup	data page (2.2.4)		
		Barometric pressure	data page (2.2.5)		
		Averaging	data page (2.2.6)		
		Totals format	data page (2.2.7)		
	General data	Date/time	data page (2.3.1)		
		Timezone	data page (2.3.2)		
		Period settings	data page (2.3.3)		
		User defined	Display	Summary display	data page (2.3.3.1.1)
				Extra sum. display	data page (2.3.3.1.2)
			Reports	data page (2.3.3.2)	
				data page (2.3.3.3)	
		Password	data page (2.3.4)		_
		Reset	Totals reset	data page (2.3.5.1)	
			General reset	data page (2.3.5.2)	
		Version control	data page (2.3.6)		
		Company data	data page (2.3.7)		
		LCD settings	data page (2.3.8)		
		Character type	data page (2.3.9)		_
	Interfaces	Serial ports	Serial port 1	data page (2.4.1.1)	
			Serial port 2	data page (2.4.1.2)	
			Serial port 3	data page (2.4.1.3)	
		Ethernet port	data page (2.4.2)		
		USB		-	
	Operator params.	Keypad & limits	data page (2.5.1)		
		Keypad values	data page (2.5.2)		
	Restore	Parameter project	data page (2.6.1)		
		Firmware	data page (2.6.2)		

(*) The number of channels depends on the type of the I/O board installed. See chapter 4 for details. (**) Submenus for Stream 2, 3, ..., 8 are identical with those of Stream 1 (**) Submenus for virtual streams 10, 11, 12 are identical with those for Stream 9

Figure 6-7 Main menu - Parameters

Main menu	Submenu 1	Submenu 2	Submenu 3
Alarms & events	Not acknowledged	data page (3.1)	
	Acknowledged	data page (3.2)	
	Events	Alarm log	data page (3.3.1)
		Event log	data page (3.3.2)
		Downloaded log	data page (3.3.3)
		Premium report	data page (3.3.4)
Tests	IO board 1	data page (4.1)	
	IO board 2	data page (4.2)	
	IO board 3	data page (4.3)	
	IO board 4	data page (4.4)	
	IO board 5	data page (4.5)	
	IO polling	data page (4.6)	
	Modbus regs	data page (4.7)	
	IO polling	data page (4.8)	
Calibration			_
Help	data page (6)		
Language	data page (7)		

(Main menu continued)

6.5 Entering data

There are two different data types in the UNIFLOW-200.

Numeric data can have any numeric value the operators enter (within the limit of the applicable standard). An example of such value is the orifice bore diameter.

Selection data can have value selected from a list of options.

An example of such value is the differential pressure tapping location of the orifice meter. It can be selected from a list comprising corner, flange or D and D/2 tapping.

Changing the value of numeric data or selection of any displayed parameter is straightforward with the UNIFLOW-200.

6.5.1 Changing numeric data

Locate the parameter to be changed in the Parameters menu navigating to the appropriate data page. Entering into Parameters menu key in the password corresponding to the security level the desired parameter can be changed.

Select the parameter on the data page using $\, \hat{\mathrm{ tr}} \,$ and $\, \mathbb{I} \,$ keys.

Press Change key and enter the new value. If necessary, you can edit the new data as you key it in. Use Clear key if you want to delete single figures or characters.

Press OK function key or Enter key to finish editing and accept the entered figures.

Pressing Esc key while editing causes the data entry process aborted and the original value of the parameter is restored.

Select the next parameter to be edited and repeat the procedure above.

When you finish the data editing on the data page press the Save function key to make your modification permanent. Pressing Save key saves the modified parameters and return to the parent menu from the data page.

If instead of Save key you press Esc key all the modification done on the data page are discarded. It causes the original values of the parameters are restored and return to parent menu.

6.5.2 Changing selection

Changing the selection is done in a similar way as changing the numeric data.

The only difference is that the list of available options for selection is scrolled through in the data entry field by pressing Change key repeatedly.

6.6 Data pages

The data pages are listed in the Section 9.

7 Maintenance and troubleshooting

In normal operating environment UNIFLOW-200 do not require any periodic maintenance. However the real time IC (Dallas 12887) shall be replaced after 10 years of operation.

If the UNIFLOW-200 fails to start check the fuses.

There are three fuses located on the rear panel of the flow computer as shown on the figure below.

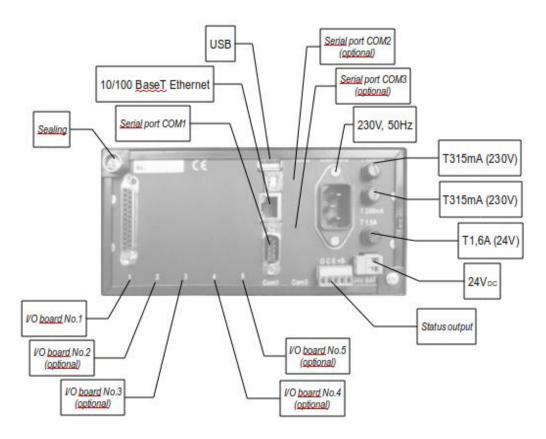


Figure 7-9 Fuses

Fuse F1 (T type 1.6 A) protects the 24 VDC power input. Fuses F2 and F3 (T type 315 mA) protects the 230 V 50 Hz power input.

CAUTION

Disconnect both 230 V 50 Hz and 24 VDC power inputs before the fuse replacement. Never use fuses with higher rating then it is recommended. It may cause damage of the instrument.

The signal on the input and output channels can be checked in the menu: Main menu – Tests – I/O board n, where n is the number of I/O board to be tested. The data page of the I/O boards shows:

- current in mA for current input and current output channels;
- resistance for PRT/RTD channels;
- frequency and number of pulses received for pulse input channels;
- state (open or closed) for digital input and digital output channels.

8 Support

For convenience of operation software tool is available for UNIFLOW-200.

8.1 U200ToolBox

It is a Java based application running on PC consists of three tools.

8.1.1 UNISetup

General features of the UNISetup

- connects to UNIFLOW-200 on the Ethernet port;
- uploads application parameters from UNIFLOW-200;
- generates application parameters off-line;
- edits application parameters off-line;
- saves application parameters on the disk drive of the PC;
- downloads application parameters to UNIFLOW-200.

8.1.2 UNIArchive

General features of the UNIArchive

- connects to UNIFLOW-200 on the Ethernet port;
- uploads archive data files from UNIFLOW-200;
- saves archive data file on the disk drive of the PC.

8.1.3 UNIUpdate

- updates the firmware of UNIFLOW-200;
- update file and download code supplied by manufacturer.

See installation and operating instruction of the U200ToolBox in the help file of the software. U200ToolBox is available for download on the web site of manufacturer, <u>www.processcontrol.hu</u>.

9 Detailed operation – The menu tree

In this section, the data pages are described in detail. The order of data pages follows the menu structure.

9.1 Flow

In the Flow menu, the measured and calculated data can be called on the display. The data are grouped together on several submenu pages as described below.

No password is required to enter the Flow menu and to display any data.

No data modification can be initiated in the Flow menu.

However commands required for certain mode of operation can be entered.

Such commands include:

- flow meter serial test start and stop command
- batch control start and stop command

9.1.1 Stream data

9.1.1.1 Summary display 1, 2, 3 and 4

Route in the menu tree:

Main menu	Submenu 1	Submenu 2	Submenu 3
Flow	Streams	Summary display	data page (1.1.1)
		Summary display 2	data page (1.1.8)
		Summary display 3	data page (1.1.9)
		Summary display 4	data page (1.1.10)

The summary displays collect together the most important metered and calculated data for each metering stream. The data items to be shown on the summary displays are editable. They can be edited in the menu:

Main menu	Submenu 1	Submenu 2	Submenu 3	Submenu 4	Submenu 5
Parameters	General data	User defined	Display	Summary display	data page (2.3.3.1.1)

The operator can modify the default display or build a very new one most suitable for the particular application.

There are four summary displays available in the flow computer.

Summary display 1 has the default content as shown in the figure below.

Summary display 2 shows the same data as summary display 1 but with double sized characters for better visibility. This is the default display page appearing on the display if no any key is pressed on the keypad for more then 2 minute.

Summary display 3 shows the previous month data by default.

Summary display 4 shows the current month data by default.

The operator can create his own set of displayed data here if desired.

01.Str. M1	
CVOL flowrate	4.065.8723 m³∕h
ENGY flowrate	149.5568 GJ/h
Gauge pressure	10.1587 bar
Abs. pressure	11.1587 bar
Temperature	18.6464 °C
Temp. at'+' side	18.6464 °C
Inuse diff.press.	18.6055 mbar
Relative density	0.6357
Base density	0.7790 kg∕m³
Line density	8.6831 kg∕m³
Inf.cal.value	36.7834 MJ∕m³
Sup.cal.value	40.7191 MJ∕m³
2010.09.30. 15:42:07	
	🗘 Menu

Figure 9-10 The default summary display

The first line of the display identifies the metering stream as follows.

nn.Str. Stream name

where *nn* the stream number from 01 to 12

Stream name any string entered for the stream as name in the stream parameters.

Function of the F keys on the summary display data page:

- c go to the summary display of the previous metering stream
- ⇒ go to the summary display of the next metering stream
- for Summary display 1 scrolls through data pages

Summary display 1 Summary display 3 Summary display 4 Flow rates Cumulative totals

Cumulative premium totals

Cumulative fault totals

for Summary display 2 scrolls through data lines

Menu returns to the parent menu.

9.1.1.2 Periodic totals

Route in the menu tree:

1	Main menu	Submenu 1	Submenu 2	Submenu 3
	Flow	Streams	Periodic totals	data page (1.1.2)

The periodic totals data page shows the totals for the current and the previous period of the hour, shift, day, multi day and month as shown on the figure below.

01 <mark>.Str. M1</mark>		
Periodic tota	als: CVOL	พ ³
Total	previous	current
hourly	3842	16
shift	0	15820
daily	12 907	15820
multiday	12 907	15820
monthly	12 907	15820
Max.hourly du	uring the mont	:h
CVOL	4065	4064
(mm.dd.hh)	(09.30.17)	(10.01.11)
		Menu

Figure 9-11 Periodic totals

The first line of the display identifies the metering stream.

Function of the F keys on the periodic totals data page:

- go to the periodic totals of the previous metering stream
- \Rightarrow go to the periodic totals of the next metering stream
- ♣ scrolls through the totals

CVOL (volume at base conditions) MASS (mass) ENERGY (energy) UVOL (volume at line conditions) CO2 mass (mass of CO2 emission) Prem. CVOL (premium volume at base conditions) Fault CVOL (fault volume at base conditions) Menu returns to the parent menu.

9.1.1.3 Flow rates

Route in the menu tree:

Main menu	Submenu 1	Submenu 2	Submenu 3
Flow	Streams	Flow rates	data page (1.1.3)

The flow rates data page shows the instantaneous flow rates as shown on the figure below. The flow rates are displayed in per hour and per day basis as well.

01.Str. NGAS-ORIFIC	E
Flowrates	-
CVOL flowrate	4854.1621 m³∕h
UVOL flowrate	868.3538 m³∕h
Raw UVOL flowrate	
Mass flowrate	3317.7522 kg∕h
Energy flowrate	181.5792 GJ∕h
CO2 flowrate	8950.1768 kg∕h
CVOL flowrate	116 499.890 m³/d
UVOL flowrate	20840.4902 m³/d
Raw UVOL flowrate	
Mass flowrate	79626.0547 kg/d
Energy flowrate	4357.9004 GJ/d
C <u>O2 flowrate</u>	214804.250 kg/d
	Menu

Figure 9-12 Flow rates

The first line of the display identifies the metering stream.

Function of the F keys on the flow rates data page:

- c go to the flow rates of the previous metering stream
- ⇒ go to the flow rates of the next metering stream
- \$\$ scrolls through data pages

Flow rates Cumulative totals

Cumulative premium totals Cumulative fault totals Summary display 1 Summary display 3 Summary display 4 **Menu** returns to the parent menu.

9.1.1.4 Cumulative totals

Route in the menu tree:

Main menu	Submenu 1	Submenu 2	Submenu 3
Flow	Streams	Cumulative totals	data page (1.1.4)

The cumulative totals data page shows the non-resettable counters for the totals as shown on the figure below.

04.04 M4	
01.Str. M1	
Cumulative totals	
CAOF	26061 m ³
UVOL	2.337 m ³
Raw UVOL	
MASS	20301 kg
ENERGY	957 GJ
CO2 mass	54 326 kg
Flow time	205.8425 h
Fault flow time	75.6793 h
	🕂 🔰 Menu 🤇

Figure 9-13 Cumulative totals

The first line of the display identifies the metering stream.

Function of the F keys on the cumulative totals data page:

- go to the flow rates of the previous metering stream
- \Rightarrow go to the flow rates of the next metering stream
- scrolls through data pages
 Cumulative totals
 Cumulative premium totals
 Cumulative fault totals
 Summary display 1
 Summary display 3
 Summary display 4
 Flow rates
 Menu returns to the parent menu.

9.1.1.5 Premium totals

Route in the menu tree:

Main menu	Submenu 1	Submenu 2	Submenu 3
Flow	Streams	Premium totals	data page (1.1.5)

The premium totals data page shows the counters for the premium totals measured above the set premium limit as shown on the figure below. Setting of the premium limit see in the menu:

Main menu	Submenu 1	Submenu 2	Submenu 3	Submenu 4
Parameters	Streams	Physical stream	Stream nn	Premium limits
		01.Str. M1 Cumulative premiu CVOL UVOL MASS ENERGY		3 9 9
				_
			Mer	iu 🦯

Figure 9-14 Premium totals

The first line of the display identifies the metering stream.

Function of the F keys on the premium totals data page:

- ⇐ go to the flow rates of the previous metering stream
- ⇒ go to the flow rates of the next metering stream
- \$\$ scrolls through data pages

Cumulative premium totals Cumulative fault totals Summary display 1 Summary display 3 Summary display 4 Flow rates Cumulative totals **Menu** returns to the parent menu.

9.1.1.6 Fault totals

Route in the menu tree:

Main menu	Submenu 1	Submenu 2	Submenu 3
Flow	Streams	Fault totals	data page (1.1.6)

The fault totals data page shows the counters for the fault totals measured under fault conditions as shown on the figure below. Description of the fault conditions see in the section 9.3.

02.Str. M2 Cumulative fault totals CVOL UVOL Raw UVOL MASS ENERGY	283 m ² 25 m ² 25 m ³ 223 kg 10 GJ
«-» «-» «	t Menu

Figure 9-15 Fault totals

The first line of the display identifies the metering stream.

Function of the F keys on the fault totals data page:

- go to the flow rates of the previous metering stream
- ⇒ go to the flow rates of the next metering stream
- \$\$ scrolls through data pages

Cumulative fault totals Summary display 1 Summary display 3 Summary display 4 Flow rates Cumulative totals Cumulative premium totals **Menu** returns to the parent menu.

9.1.1.7 Process data

Inside the process data menu two or more data pages may appear. The content of these data pages depends on the flow meter selected and the fluid to be measured.

The process data menu page is shown on the figure below.

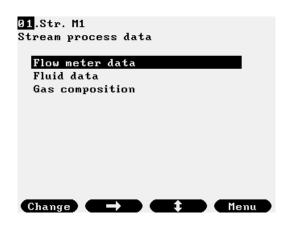


Figure 9-16 Process data menu page

Function of the F keys on the process data menu page:

Change change the metering stream the data to be displayed from

- \Rightarrow go to the highlighted data page
- select the next data page

Menu returns to the parent menu.

9.1.1.7.1 Flow meter data

Route in the menu tree:

Main menu	Submenu 1	Submenu 2	Submenu 3	Submenu 4
Flow	Streams	Process data	Flow meter data	data page (1.1.7.1)

This data pages shows the parameters of the flow meter under line conditions and the measured and calculated data directly related to the flow meter. The content of the flow meter data pages for different flow meters shown on the figures below.

01.Str. NGAS-ORIFICI	E	01.Str. NGAS-ORIFICE	
Orifice plate data		Orifice plate data	
Flow standard	IS05167:2003	Beta	0.499955
dP tappings	Flange	Corr.pipe diam.	199.9821 mm
Disch.coeff.(C)	0.603467	Corr.bore diam.	99.9821 mm
Exp.factor (eps)	0.993963	Pressure loss	67.6381 mbar
Vel.of appr.(E)	1.032783	Temp. at'+' side	11.0271 C
Reynolds number	676414	Flow velocity	12.1606 m∕s
Beta	0.499955	Coeff. Kp.	0.00000
Corr.pipe diam.	199.9821 mm	Coeff. Ksh	0.00000
Corr.bore diam.	99.9821 mm	Coeff. Kshf	0.00000
Pressure loss	67.6369 mbar	Coeff. KRe	0.00000
Temp. at'+' side	11.0271 C	Coeff. Kt	0.00000
Flow velocity	12.1610 m/s	Coeff. Ksu	0.00000
	Menu		Menu

Figure 9-17 Flow meter data for differential pressure devices (orifice, nozzle, Venturi tube)

03.Str. NGAS-T	URBINE	
Meter data		
1	1ain signal	Check signal
Pulse number	187786	187808
Pulse incremen	t 482	481
Frequency	963.008	963.007
K-factor	3585.9	pls∕m ³
Bad pulses		-1
Total bad puls	es	22
Flow velocity	8	.5482 m∕s
		Menu

Figure 9-18 Flow meter data for pulse output flow meters (turbine meter, Vortex meter, etc.)

02.Str. NGAS-US METER	
FLOWSIC meter data	
UVOL flowrate	––– m³∕h
Avg gas velocity	m∕s
path 1	m∕s
path 2	m/s
path 3	m/s
path 4	n/s
Avg VOS	n/s
path 1	n/s
path 2	n/s
path 3	n/s
path 4	n∕s
Forward UVOL	<u> </u>
	Menu Menu

02.Str. NGAS-US METER		02.Str. NGAS-US METE	R
FLOWSIC meter data		FLOWSIC meter data	
Forward UVOL	m ³	Rev UVOL fault	m ³
Fwd UVOL fault	m ³	Counter resol.	
Reverse UVOL	m ³	Low flow cut-off	m³∕h
Rev UVOL fault	m ³	Adjustment fwd	
Counter resol.		Adjustment rev	
Low flow cut-off	––– m³∕h	Zero adjustment	
Adjustment fwd		Meter pressure	
Adjustment rev		Meter temperat.	
Zero adjustment		CVOL flowrate	––– m³∠h
Meter pressure		Calculated VOS	437.3309 m/s
Meter temperat.		Average VOS	m/s
CVOL flowrate	––– m³∕h	Flow velocity	0.0000 m/s
	Menu		Menu
02.Str. NGAS-US METER		02.Str. NGAS-US METE	R
FLOWSIC diagnostic data		FLOWSIC diagnostic d	
Valid samples		path 3B	dB
path 1	pcs	path 4A	dB
path 2	pcs	path 4B	dB
path 3	pcs	Gain limit	
path 4	pcs	path 1A	
Gain	1	path 1B	
path 1A	dB	path 2A	
path 1B	dB	path 2B	
path 2A	dB	path 3A	
path 2B	dB	path 3B	
path 3A	dB	path 4A	
path 3B	dB	path 4B	
	Menu		Menu
02.Str. NGAS-US METER		02.Str. NGAS-US METE	R
FLOWSIC diagnostic data		FLOWSIC diagnostic d	ata
SNR		path 2B	dB
path 1A	dB	path 3A	dB
path 1B	dB	path 3B	dB
path 2A	dB	path 4A	dB
path 2B	dB	path 4B	dB
path 3A	dB	Status register	
path 3B	dB	path 1	
path 4A	dB	path 2	
path 4B	dB	path 3	
Status register		path 4	
path 1		System status 1	
path 2		System status 2	
	Menu		Menu

Figure 9-19 Flow meter data (Flowsic-600 US meter, serial communication)

The content of the flow meter data pages for ultrasonic flow meters depends on the type of ultrasonic meter.

Function of the F keys on the flow meter data page:

⇐ returns to the Process data menu page

\$\$\$ scrolls through data lines on the data page if not all the line fit on one display

Menu returns to the parent menu.

9.1.1.7.2 Fluid data

|--|

Main menu	Submenu 1	Submenu 2	Submenu 3	Submenu 4
Flow	Streams	Process data	Fluid data	data page (1.1.7.2)

The fluid data page shows the fluid properties. The content of the data page highly depends on the fluid selected. Examples of the data pages are shown on the figures below.

01.Str. NGAS-ORIFICE		01.Str. NGAS-ORIFICE	
Fluid data		Fluid data	
Fluid	Natural gas	Fluid	Natural gas
Dynamic viscos.	1.0754e-05 Pasec	Line compr.fact.	0.991212
Isentropic expon.	1.307104	Line/Base compr.	0.993149
Base compr.fact.	0.998049	Conversion factor	4.3818
Line compr.fact.	0.991211	Relative density	0.557761
Line/Base compr.	0.993149	Base density	0.683486 kg∕m³
Conversion factor	4.3817	Line density	2.994872 kg∕m³
Relative density	0.557761	Inf.cal.value	33.6783 MJ∕m³
Base density	0.683486 kg∕m³	Sup.cal.value	37.4069 MJ∕m³
Line density	2.994859 kg⁄m³	J-T coefficient	0.4000 °C/bar
Inf.cal.value	33.6783 MJ∕m³	Spec.carbon cont.	0.5032 kg∕m³
Sup.cal.value	37.4069 MJ∕m³	Calculated VOS	435.9613 m/s
	Menu		Menu

Figure 9-20 Fluid data for natural gas

04.Str. CR.OIL-LIQ.	TURBINE	04.Str. CR.OIL-LI	04.Str. CR.OIL-LIQ.TURBINE		
Fluid data		Fluid data			
Fluid	crude oil	Fluid	crude oil		
Uncor.dens.A	780.000000 kg	′m ³ CtLd	1.003790		
Uncor.dens.B	853.909973 kg	′m ³ CpLd	1.000927		
D.met.Ahous.T	0.000000 C	CtpLd	1.004720		
D.met.Bhous.T	0.000000 C	Alpha	0.0012647 1/°C		
Inuse meas.dens	700.000000 kg	′m³ Fluid temp@meter	11.000000 C		
Base density	696.711275 kg	′m³ 🔰 Fluid pres@meter	4.348644 bar		
Line density	700.538111 kg	∕m ³ Fp(m)	1.3114e-04 1/ba		
Fluid temp.@dens	12.000000 C	CtLm	1.005051		
Fluid pres.@dens	8.000000 ba	e CpLm	1.000439		
Fp(d)	1.3231e-04 1/	ar CtpLm	1.005493		
CtLd	1.003790	Inf.cal.value	40.360001 MJ/k		
	Men		Menu		
	Ø4.Str. CR.OIL				
	Fluid data	LIQ. I OKDINE			
	Fluid	crude oil			
	Alpha	0.0012647 1/°	c .		
	Fluid temp@me		0		
	Fluid pres@me				
	Fp(m)	1.3114e-04 1/b			
	rp(m) CtLm	1.31140-04 1/0	a		

Figure 9-21	Fluid data f	or crude oil	and refined	products
-------------	--------------	--------------	-------------	----------

Ť

1.005051

1.000439

1.005493

40.360001 MJ/kg

0.0210161 Pasec 0.807420 kg/kg Menu

30 nn2/s

CtLm

CpLm

CtpLm

Inf.cal.value Kinematic viscosity

Dynamic viscosity

Specific carbon

01.Str. ProdPlant1 - ethanol1			01.Str. ProdPlant1 - ethanol1		
Fluid data			Fluid data		
Fluid	ethanol		Fluid	ethanol	
Meas.density	805.000000	kg/m ³	Mix.base dens.	804.839001	kg/m ³
Mix.line dens.	805.000001	kg/m ³	Eth.base dens.	789.234963	kg/m ³
Mix.base dens.	804.839001	kg/m ³	Ethanol ×(m/m)	94.753628	×
Eth.base dens.	789.234963	kg/m ³	Ethanol %(v/v)	96.627011	×
Ethanol ×(m/m)	94.753628	×	Dynamic viscos.	0.001	Pasec
Ethanol ×(v/v)	96.627011	×	Fluid temp.@dens	20.000000	°C
Dynamic viscos.	0.001	Pasec	Fluid pres.@dens	3.500000	bar
Fluid temp.@dens	20.000000	°C	Fluid temp@meter	20.000000	°C
Fluid pres.@dens	3.500000	bar	Fluid pres@meter	3.500001	bar
Fluid temp@meter	20.000000	°C	CpLd	1.000200	
Fluid pres@meter	3.500001	bar	CpLm	1.000200	
		enu 🔵			enu

Figure 9-22 Fluid data for ethanol

06.Str. GEN.LIQUID-VORTEX				
Fluid data				
Fluid	general liquid			
Line density	796.369995 kg∕m ³			
Base density	800.000000 kg∕m³			
CtLm	0.995463			
CpLm	1.000000			
Dynamic viscos.	1.0000e-05 Pasec			
	Menu			

Figure 9-23 Fluid data for general liquid

07.Str. LIQUID MIX	XTCORIOLIS	07.Str. LIQUID MIX	07.Str. LIQUID MIXTCORIOLIS		
Fluid data		Fluid data			
Fluid	Liquid mixture	Fluid	Liquid mixture		
Mix.line dens.	850.000000 kg	g∕m³ Work.dens.fluid1	846.723389 kg⁄m³		
Work.dens.fluid1	846.706482 kg	g∕m³ Work.dens.fluid2	725.854614 kg⁄m³		
Work.dens.fluid2	725.833191 kg	g∕m³ Alpha fluid 1	8.4979e-04 1∕°C		
Alpha fluid 1	8.4979e-04 1/	∕°C Beta fluid 1	7.4281e-05 1/bar		
Beta fluid 1	7.4291e-05 1/	/bar CtLm fluid 1	0.996145		
CtLm fluid 1	0.996125	CpLm fluid 1	1.000000		
CpLm fluid 1	1.000000	Alpha fluid 2	0.0012512 1∕°C		
Alpha fluid 2	0.0012512 1/	∕°C Beta fluid 2	1.1878e-04 1/bar		
Beta fluid 2	1.1880e-04 1/	/bar CtLm fluid 2	0.994321		
CtLm fluid 2	0.994292	CpLm fluid 2	1.000000		
CpLm fluid 2	1.000000	Vol.contr.fact	1.000000		
	flen Men	14 C - D	Menu		

Figure 9-24 Fluid data for liquid mixture

08.Str. STEAM VENT	'URI	
Fluid data		
Fluid	water steam	
Method	IAPWS-IF97	
Phase superhe	ated+saturated	steam
Dynamic viscos.	2.0664e-05	Pasec
Isentropic expon.	1.254610	
Line density	51.889932	kg/m ³
Specific enthalpy	2782.661825	kJ/kg
		enu

Figure 9-25 Fluid data for water steam

Function of the F keys on the fluid data data page:

returns to the Process data menu page

scrolls through data lines on the data page if not all the lines fit on one display **Menu** returns to the parent menu.

9.1.1.7.3 Gas composition

Route in the menu tree:

Main menu	Submenu 1	Submenu 2	Submenu 3	Submenu 4
Flow	Streams	Process data	Gas composition	data page (1.1.7.3)

In case of natural gas flow measurement the gas composition is shown on separate data page as shown below. The data page indicates the composition used in gas properties calculation.

01.Str. N	GAS-ORIFIC	E		01.Str. NGAS-OR	IFICE	
				ammonia	0.0000	
N2	0.7632	npentane	. 0.0098	benzene	0.0000	
C02	0.0489	nhexane	0.0196	dimet-prop-22	0.0000	
H2S	0.0000	nheptane	. 0.0000	met-pent-2	0.0000	
H20	0.1996	noctane	0.0000	met-pent-3	0.0000	
helium	0.0000	nnonane	0.0000	dimet-but-22	0.0000	
methane	95.8377	ndecane	0.0000	dimet-but-23	0.0000	
ethane	0.7925	oxygen	0.0000	ethylene	0.0000	
propane	0.2642	CO	0.0000	propylene	0.0000	
ibutane	0.0489	H2	1.9569	meth-alcohol	0.0000	
nbutane	0.0489	argon	0.0000	sulf-dioxid	0.0000	
ipentane	0.0098			air	0.0000	
Other com	nponent	Total:	100.0000		Total:	100.0000
			Menu			Menu

Figure 9-26 Gas composition data for natural gas

Function of the F keys on the gas composition data page:

scrolls through data lines on the data page if not all the lines fit on one display **Menu** returns to the parent menu.

returns to the Process data menu page

9.1.2 Plant I/O

Route in the menu tree:

Main menu	Submenu 1	Submenu 2	Submenu 3
Flow	Plant I/O	I/O board 1	data page (1.2.1)
		I/O board 2	data page (1.2.2)
		I/O board 3	data page (1.2.3)
		I/O board 4	data page (1.2.4)
		I/O board 5	data page (1.2.5)
		Modbus signals	data page (1.2.6)

The data pages in the plant I/O submenu show:

- signals in engineering unit for current, PRT/RTD and frequency input and current output channels;
- states for digital input and digital output channels.

Data pages for the different type of the I/O boards shown on the figures below.

5.IO Board ANI8	
1 DP1	6.339 mbar
2 DP2	27.137 mbar
3 DP3	142.217 mbar
4 P	5.522 bar
5 T	10.294 °C
6 VORTEX	430.086 m³∕h
7 CORIOLIS	552.826 kg⁄h
8 DENSITY	939.646 kg∕m ³
	Menu

Figure 9-27 I/O board *n* data page for ANI8 board

Channel 1, 2 and 3 configured to measure differential pressure

Channel 4 configured to measure pressure

Channel 5 configured to measure temperature on current input

Channel 6 configured to measure volume flow rate on current input

Channel 7 configured to measure mass flow rate on current input

Channel 8 configured to measure density on current input

1.IO Board ANI4PT2	
1 DP1.M1	45.960 mbar
2 DP2.M1	214.575 mbar
3 P.M1	5.530 bar
4 QM.M5	3643.067 kg∕h
5 T.M1	19.466 °C
6	inactive
	🗘 🗘 Menu

Figure 9-28 I/O board *n* data page for ANI4PT2 board

Channel 1 and 2 configured to measure differential pressure

Channel 3 configured to measure pressure.

Channel 4 configured to measure mass flow rate signal.

Channel 5 configured to measure temperature from PRT sensor.

Channel 6 is not used, it is inactive.

2.10 Board PDI0484		2.10 Board PDI0484	
1 TURBINE UVOL	100.002 m³∕h	4 DENSITY2	720.000 kg∕m³
2 TURBINE FLOW CHE	100.001 m³∕h	5 VALVE OPENED	yes
3 DENSITY1	kg∕m³	6 VALVE CLOSED	no
4 DENSITY2	720.000 kg∕m³	7	inactive
5 VALVE OPENED	yes	8	inactive
6 VALVE CLOSED	no	9	inactive
7	inactive	10	inactive
8	inactive	11	inactive
9	inactive	12	inactive
10	inactive	13 STREAM1 CVOL FR	1 pulse
11	inactive	14 STREAM1 HI limit	closed
12	inactive	15 STR1 PRES LO lim	closed
13 STREAM1 CVOL FR	0 pulse	16 VALVE <u>CL</u> OSE	closed
	🗘 Menu		🗘 Menu

Figure 9-29 I/O board *n* data page for PDIO484 board

Channel 1 and 2 configured to count high frequency pulses from flow meter

Channel 3 and 4 configured to measure density frequency from densitometer

Channel 5 and 6 configured to signal valve open and closed position

Channel 13 configured to output low frequency pulses proportional to volume at base conditions

Channel 14 configured to signal volume at base conditions flow rate high limit alarm

Channel 15 configured to signal pressure input low limit alarm

Channel 16 configured to signal valve position

3.10 Board A0DI0484		3.10 Board A0DI0484	
1 P.M1	5.531 bar	4 EN.M1	177.788 GJ∕h
2 CVOL.M1	4748.029 m³∕h	5	inactive
3 T.M1	19.453 °C	6	inactive
4 EN.M1	177.611 GJ/h	7	inactive
5	inactive	8	inactive
6	inactive	9	inactive
7	inactive	10	inactive
8	inactive	11	inactive
9	inactive	12	inactive
10	inactive	13 COMMON-ERROR	open
11	inactive	14 CVOL-LOlimit.M1	closed
12	inactive	15 CVOL-HIlimit.M1	closed
13 COMMON-ERROR	open	16 TIME BASE	closed
	Menu		🗘 🚺 Menu 🔵

Figure 9-30 I/O board *n* data page for AODIO484 board

Channel 1 configured to output current proportional to pressure

Channel 2 configured to output current proportional to volume at base conditions flow rate

Channel 3 configured to output current proportional to temperature

Channel 4 configured to output current proportional to energy flowrate

Channel 13 configured to signal common alarm

Channel 14 configured to signal volume at base conditions flowrate low limit alarm

Channel 15 configured to signal volume at base conditions flowrate high limit alarm

Channel 16 configured to output timed pulses

Modbus signal	
1 FLOWSIC-600	––– m³∕h
2	inactive
2 3 4	inactive
	inactive
5	inactive
6	inactive
7	inactive
8	inactive
9	inactive
10	inactive
11	inactive
12	inactive
13	inactive
	Menu

Channel 1 configured for Sick-Maihak ultrasonic meter

Function of the F keys on the I/O board data page:

- \Rightarrow display the I/O signals on the board in the next slot
- display the I/O signals on the board in the previous slot
- scrolls through channels of the I/O board

Menu returns to the parent menu.

9.1.3 Archive data

Route in the menu tree:

Main menu	Submenu 1	Submenu 2	Submenu 3
Flow	Archived data	Periodic totals	data page (1.3.1)
		Batch data	data page (1.3.2)

UNIFLOW-200 has an extensive data archive.

The archived data divided into two subgroups:

- archived periodic totals;
- archived batch data;

The most convenient way to access the archived data is to read them via the Ethernet link by means of UNIArchive software.

However all the archive data can be called on the display as well, if PC is not available.

9.1.3.1 Archived periodic totals

The archive data data page is shown on the figure below.

01.Str.	NGAS-OF	IFICE	
Archive	hourly	values 3	2010.10.19
CVOL	m ³ B	'ressG bar	Temp. C
to	otal	average	average
7	×	×	×
8	4 2 4 5	4.537870	19.44961
9	4 753	4.537494	19.43871
10	4754	4.538520	19.45577
11	4 760	4.544064	19.50669
12	4 756	4.540540	19.44350
13	4 755	4.539455	19.43900
14	4 754	4.539127	19.43771
Select		Char	t Menu

Figure 9-32 Archive data data page

Configured to display

- hourly totals for volume at base conditions;
- hourly average of the gauge pressure;
- hourly average of the temperature

The totals are displayed for 19 October 2010 for the hours from 7 to 14.

Data are displayed in three columns preceding with serial number of the periods in the first column.

The selection of the data to be displayed and the time period is done by the function keys as described below.

Press \Leftrightarrow key to select the field to be edited. Press \oplus key to scroll through the items from selection list in the data field or press Change key to enter the numeric fields. The editable fields and their values are as follows.

- stream number from 01 to 12
- period field: hourly, shift, daily, multi day, monthly
- date field: yyyy mm dd
- variable name field:
 - o CVOL m³ (volume at base conditions);
 - o UVOL m^3 (volume at line conditions);
 - o MASS kg (mass)
 - o ENGY GJ (energy)
 - o CO2MASS kg (mass of CO2 emission)
 - O RAW UVOL m³ (volume at line conditions before applying any error curve correction);
 - o Temp. °C (temperature)
 - o dP mbar (differential pressure)
 - o fltCVOL m³ (fault volume at base conditions);
 - o fltUVOL m³(fault volume at line conditions);
 - o fltMASS kg (fault mass);
 - o fltENGY GJ (fault energy);
 - o PressG bar (gauge pressure);
 - o Dens. kg/m³ (line density);
 - o Rel.Dens. (relative density);
 - o premCVOL m³ (premium volume at base conditions);
 - o premUVOL m³ (premium volume at line conditions);
 - o premMASS kg (premium mass);
 - o premENGY GJ (premium energy);
 - o PressA bar (absolute pressure);
 - o K(Z1/Zb) (ratio of the compression factor at line conditions to base conditions);
 - o inf.cal MJ/m³ (inferior calorific value);
 - o sup.cal MJ/m³ (superior calorific value)
 - No of cycl. (number of calculation cycles;
- variable type subfield:

For totals this subfield can be selected as:

- o total (displays the period counter for the selected period);
- min. (displays the minimum flow rate for the flow corresponding to the total, e.g. minimum mass flow rate for the mass total);
- max. (displays the maximum flow rate for the flow corresponding to the total, e.g. maximum mass flow rate for the mass total);

For non total variables this subfield can be selected as:

- o average (displays the average value of the variable for the selected period);
- o min. (displays the minimum value for the selected variable in the selected period);
- o max. (displays the maximum value for the selected variable in the selected period);

Press OK key after all the selection is done.

The data are displayed on the screen and the first data line is highlighted.

Press \mathbb{Q} and \widehat{U} keys for scrolling through the data lines.

Press ⇔ key for selecting the editable fields to select different data for different periods to be displayed. Press Menu key to return to the parent menu.

Function of the F keys on the Archive data page:

- \Leftrightarrow select the next field for editing
- select he data item in the field being edited
- OK confirm the selection and display the data
- select the next data line
- **①** select the previous data line

Menu returns to the parent menu.

9.1.3.2 Archived batch data

The archived batch data data page is shown on the figure below.

Archived batch 1Str Load_1 SZEGED KRB-349	data 2	0 11 .01.10
Batch started	2011.01	13:02:29
Batch stopped	2011.01	1.10 15:32:13
Nr.Mass kg	Dens. kg∕m³	Temp. °C
total	average	average
1 2495	846.6184	21.1554
Select	Print	Menu

Figure 9-33 Archive batch data page

The navigation on the archived batch data page and the selection of the measured value to be displayed are identical to those for the archived periodic totals.

9.1.4 Modbus registers

Route in the menu tree:

Main menu	Submenu 1	Submenu 2	
Flow	Modbus registers	data page (1.4)	

The data communication with UNIFLOW-200 is implemented with Modbus protocol.

The content of the Modbus registers can be displayed in this menu item. It can be useful in trouble-shooting if PC is not available for some reason.

The Modbus register data page is shown on the figure below.

Modbus re	egisters	
Command		read
Number fo	ormat	integer
Register	mode	Daniel
Starting	register	5000
address	hexadec.	integer
5000	0	0
5001	795	1941
5002	879E	34718
5003	4FD02	326 914
5004	101090	1055888
5005	1292	4 754
5006	C5C2	50626
5 0 0 7	B1F8E	728 974
	Change	OK Menu

The register mode can be selected as follows:

- STD Modbus (compatible with the standard Modicon format, 2 bytes/register)
- Daniel Modbus (compatible with Daniel/Enron/Omni format, 4 bytes/register)

The content of the registers displayed in hexadecimal and decimal format. The number format (short integer, integer, float) displayed as well.

See the register maps for both modes in Section 11.

Function of the F keys on the Modbus registers data page:

- ⇔ select the next field for editing
- select he data item in the field being edited
- **OK** confirm the selection and display the data
- select the next data line
- f select the previous data line

Menu returns to the parent menu.

9.1.5 Data transfer

Route in the menu tree:		
Main menu	Submenu 1	Submenu 2
Flow	Data transfer	data page (1.5)

The most convenient way to access the archived data of the UNIFLOW-200 is to read them via the Ethernet link by means of UNIArchive software. If this method of accessing the files is not available for some reason then data retrieval (sending data files to the serial or USB port) can be initiated in this menu.

There are several archive files available in the UNIFLOW-200. All of them can be sent to the serial or USB port, however not all of them are optimized for printer.

The reports Month (short daily) and Month (short hourly) are optimized for printer. The delimiter character is space in theses files and they can be printed on standard 80-character wide printer.

The rest of the files have semicolon delimiter character and they are wider then 80 columns. They can be caught on the serial or port of PC by some terminal program and saved on the hard disk for further evaluation or can be written to pen drive on the USB port.

The archive data files sent to the serial or USB port make use of UTF8 encoding. To display the archive data file on external device it shall be set accordingly. Otherwise some of the characters on the reports might not be displayed properly.

The data transfer data page is shown on the figure below.

Archive data Port Data file Month Start	transfer USB Month (short daily) October 2010 no	
Menu Cł	ange) 🕕 🕇	

Figure 9-35 Data transfer data page

The editable fields and their content are as follows:

- Port where the files to be sent)
 - o USB (Flash drive);
 - o Coml
 - o Com2
 - o Com3

• Data file (The available reports for selection are)

```
o Select all
o Month (daily short)(*);
o Month (hourly short) (*);
o Month (daily defined 1);
o Month (hourly defined 1);
o Month (daily defined 2);
o Month (hourly defined 2);
o ...
o Month (daily defined 10)
o Month (hourly defined 10)
o Logs;
o Month (multiday);
o Month (daily);
o Month (shift);
o Month (hourly);
o Year (monthly);
o Monthly batches;
o Meter serial test;
o Parameter project;
o Snapshot
o Prev. Day (hourly short) (*)
o Cur. Day (hourly short) (*)
o Prev. Day (hourly defined 1)
o Cur. Day (hourly defined 1)
o Prev. Day (hourly defined 2)
o Cur. Day (hourly defined 2)
0 ...
o Prev. Day (hourly defined 10)
o Cur. Day (hourly defined 10)
```

- Month. Select the month for which the report to be transferred.
- Start. Select value "Yes" for this field to initiate file sending

There are separate short reports for each metering stream (from 01 to 12). Reports for all streams will be sent out once the Start is selected. Reports denoted with asterisk (*) (short type reports) are available only for metering streams where the fluid is natural gas.

The non-short reports include data for all the streams.

Sample of the different short reports are shown in Annex A.

Function of the F keys on the Data transfer data page:

- select the next field for editing
- **①** select the previous field for editing
- Change modify the selected data field

OK Confirm the selection

Menu returns to the parent menu.

9.1.6 Extra summary display

Main menu	Submenu 1	Submenu 2	Submenu 3	
Flow	Extra sum. display	Extra sum. disp1	data page (1.6.1)	
		Extra sum. disp2	data page (1.6.2)	
		Extra sum. large1	data page (1.6.3)	
		Extra sum. large2	data page (1.6.4)	

Route in the menu tree:

There are two extra summary displays available in the UNIFLOW-200. Both of them can be displayed with double sized characters as well.

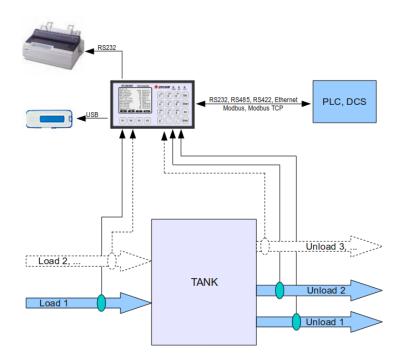
The main difference between the summary display and extra summary display is that on the extra summary display data from different metering streams can be grouped together. In case of multi stream application it helps the operator to overview the desired data from different streams on one single display.

01.Str. CVOL	NGAS-ORIFICE 42 728 465 m ³
02.Str.	NGAS-US METER
CVOL	0 m ³
03.Str.	NGAS-TURBINE
CVOL	115 415 m ³
04.Str.	CR.OIL-LIQ.TURBINE
CVOL	21 197 m ³
05.Str.	ETHANOL-CORIOLIS
CVOL	472 m ³
06.Str.	GEN.LIQUID-VORTEX
CVOL	21 186 m ³
08.Str.	STEAM-VENTURI
MASS	1029594 t
Menu	

Figure 9-36 Extra summary display

The extra summary displays are empty by default. The operator can edit them in the menu:

Main menu	Submenu 1	Submenu 2	Submenu 3	Submenu 4
Parameters	General data	User defined	Display	Summary display


9.1.7 Batches

9.1.7.1 Tank loading batch

Route in the menu tree:

Main menu	Submenu 1	Submenu 2	Submenu 3
Flow	Batches	Tank loading	data page (1.7.1)

The batch measurement was designed for tank loading system shown on the Figure 9-38.

Figure 9-37 Tank loading/unloading system with batch measurement

In the batch measurement the flow measured between the batch start and batch stop signal totalized in separate counters as batch totals. Separate averages are also calculated for the batch. Batch measurement is enabled/disabled for each metering stream in the Stream setup menu. See in 9.2.2.1.3. Stream setup.

The progress of the batch measurement can be monitored and the results of the last batch can be displayed on the batch display as shown below.

Batches 1Str Load_1 2Str Load_2 3Str Unload_3	start/stop in progress stopped stopped	Batches <mark>1Str Load_1</mark> 2Str Load_2 3Str Unload_3	start/stop stopped stopped stopped
SZEGED		SZEGED	
KRB-349		KRB-349	
Batch started 11.01	.10 13:02:29	Batch started	11.01.10 13:02:29
Batch stopped		Batch stopped	11.01.10 15:32:13
Nr.Mass kg ron kg/m	³ PressA bar	Nr.Mass kg r	•on kg∕m³ PressA bar
0 2326 851.8294	0 1.0000009	1 2495 8	351.82940 1.0000009
Select	Menu	Select	Menu

Figure 9-38 Batch display for tank loading/unloading

For each stream configured the status of the batch measurement is indicated on the upper part of the display as stopped or started.

The lower part of the display shows the batch data for the stream being highlighted as follows:

- batch start time
- batch stop time
- batch number (1 to 999, restarts at the beginning of the month)
- three selected measured batch value

The displayed measured batch values are selectable by the operator from the list:

- Mass kg (mass batch total);
- UVOL m³ (volume at line conditions batch total);
- CVOL m³ (volume at base conditions batch total);
- Dens. kg/m³ (line density batch average);
- Base.D. kg/m³ (base density batch average);
- Meas.D kg/m3 (measured density batch average);
- Temp. oC (temperature batch average);
- PressA bar (absolute pressure batch average);
- PressG bar (gauge pressure batch average);

To display the archived batch data see 9.1.3.2.

9.1.7.2 Pipeline interface batch

Main menu	Submenu 1	Submenu 2	Submenu 3
Flow	Batches	Pipeline interface	data page (1.7.2)

The batch measurement was designed to measure different kind of liquids flowing in the same pipeline each after other.

01 Str. ASZK1	in progress	01 Str. ASZK1	stopped
Batch identif.	00123	Batch identif.	00123
Product 04 FUEL OIL	850 kg/m ³	Product 04 FUEL OII	L 850 kg/m ³
Batch started 19.05	.29 19:40:19	Batch started 19	9.05.29 19:40:19
Batch stopped		Batch stopped 19	9.05.29 19:53:09
Base density	871.38 kg/m ³	Base density	871.38 kg/m ³
Line pressure	15 barg	Line pressure	15 barg
Line temperature	28 °C	Line temperature	28 °C
Line density	863.19 kg/m ³	Line density	863.19 kg/m ³
Dens.met.body T	0 °C	Dens.met.body T	0 °C
Mass flowrate	431.59 t/h	Mass flowrate	431.59 t/h
Mass	82.45 t	Mass	92.1 t
CVOL	94.86 m ³	CVOL	105.94 m ³
UVOL	95.76 m ³	UVOL	106.94 m ³
View 2 🛛 🖬	dit Menu	View 2	Edit Menu

Figure 9-39 Batch display for pipeline interface batch

For each stream configured the status of the batch measurement is indicated in the top line of the display as in progress or stopped.

The lower part of the display shows the batch data for the stream being highlighted as follows:

- batch identifier
- product information
- batch start time
- batch stop time
- nine selected measured batch variable

The displayed measured batch variables are selectable by the operator from the list:

- Mass kg (mass batch total);
- CVOL (volume at base conditions batch total);
- UVOL (volume at line conditions batch total);
- CVOL flowrate (volume at base conditions flow rate)
- UVOL flowrate (volume at line conditions flow rate)
- Mass flowrate (mass flow rate)
- Line pressure;
- Line temperature;
- Line density;
- Base density;
- Dens.met.body T (density meter body temperature);

To display the archived batch data see 9.1.3.2.

9.1.8 Meter serial test

Route in the menu tree:

Main menu	Submenu 1	Submenu 2
Flow	Meter serial yesy	data page (1.8)
	· · · ·	

Flow Meter serial test data page (1.8)

The meter serial test measurement was designed for testing two flow meters connected in serial as shown on the Figure 9-40.

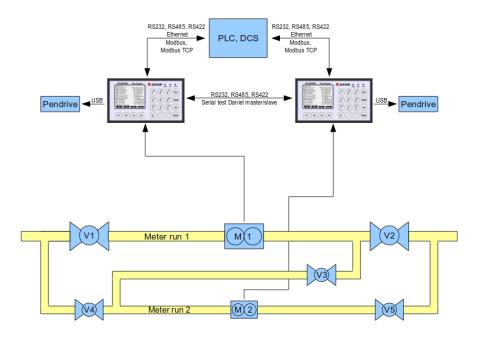


Figure 9-40 Flow meter serial test measurement

By opening and closing the appropriate valves flow is directed through both meters M1 and M2. Quantities measured during the preprogrammed test duration are compared and the deviation is determined.

The meter serial test measurement assumes that:

- separate UNIFLOW-200 flow computers are connected to the meters under tested;
- stream 1 is configured for the meter under test in both flow computers;
- stream 8 is used as shadow stream so that stream 8 can not be configured to any other meter;
- during the serial connection the fluid is measured twice. Not to account these quantities twice one of the flow computer shall be set as "custody transfer stream" and the other as "non custody transfer stream". In the "non custody transfer stream" flow computer the calculation is performed in stream 8 (shadow stream).;

- the two flow computer shall be connected via serial ports. In the "non custody transfer stream" flow computer the serial port function shall be set as "Serial test Master", while in the "custody transfer stream" flow computer the serial port shall be set as "Serial test Slave".
- the serial test measurement is enabled in the Stream setup menu. See in 9.2.2.1.3.

NOTE

UNIFLOW-200 will not perform any valve control to establish the serial connection of the meters. The appropriate valves shall be controlled manually or by some supervisory system.

UNIFLOW-200 configured as master in communication will read the data from the slave UNIFLOW-200 measured during the serial test and prepares a serial test comparison report.

The progress of the meter serial test measurement can be monitored and the results of the last test can be displayed on the meter serial test display as shown below.

1.STR. NLD M2 Meter serial test enabled	1.STR. NLD M1 Meter serial test enabled
Stream non cust.tr.str. (master)	Stream cust tr.str. (slave)
Tested stream (slave)	
modbus address 1	
name NLD M1	
Test duration 3 min.	Test duration 3 min.
Test command in progress	Test command in progress
Test started 11.01.10 15:59:35	Test started 11.01.10 15:59:26
Time to finish 1 min.52 sec.	Time to finish 1 min.54 sec.
CVOL m ³ UVOL m ³ Mass kg	CVOL m ³ UVOL m ³ Mass kg
766.90271 68.010002 589.30938	817.78393 66.508003 628.40789
Abort Stop Menu	Abort Change Menu

Figure 9-41 Meter serial test display

Function of the F keys on the Meter serial test data page

♣ select the next field for editing

Change modify the selected data field

OK Confirm the selection

Menu Returns to the parent menu.

The data fields on the data page are as follows:

• Meter serial test;

o enabled; (not editable, set in the stream setup menu)

• Stream;

o non cust.tr.str.(master);

(not editable, set in the stream setup menu)

o cust.tr.str.(slave); (not editable, set in the stream setup menu)

- Tested stream (slave) (displayed in master device only;
 - o modbus address; (not editable, set in the com port setup menu)

- o name; (not editable, name of the stream set in the slave device)
- Test duration; Numeric entry. Enter the duration of the serial test. Valid entry is from 2 to 120 minutes.
- Test command;

Display the status of the test process and this is also the command entry field. Statuses:

- o idle; (no test in progress)
- o in progress; (test in progress)
- Master com.param.error; (in Master device only. No com port is configured as Serial test Master)
- Slave com.param.error; (in Slave device only. No com port is configured as Serial test Slave)
- Communication error; (no communication with the other device) Highlighting this field command can be selected as follows:
- o start; (start the serial test, in Master device only)
- stop; (stop the serial test, in Master device only. If stop command is selected the test will be interrupted at the end of next minute and the data will be evaluated);
- abort; (abort the serial test. If abort command is selected the test will be interrupted immediately and the data will not be evaluated.
- Test started;

Start time of the meter serial test.

• Test stopped;

Stop time of the meter serial test. The last two lines show three of the measured values. The displayed values are selectable by the operator from the list:

- UVOL m³ (volume at line conditions);
- CVOL m³ (volume at base conditions);
- Mass kg (mass);
- ENGY GJ (energy);
- PressG bar (gauge pressure);
- PressA bar (absolute pressure);
- Temp. oC (temperature);
- ZI (compression factor at line conditions);
- Zn (compression factor at base conditions);
- Rel.Dens. (relative density);
- Base D kg/m³ (base density);
- Dens. kg/m³ (line density);
- ICV MJ/m3 (inferior calorific value);
- dP mbar (differential pressure);
- UVOL FR m³/h (volume at line conditions flow rate);
- CVOL FR m³/h (volume at base conditions flow rate);
- MASS FR m³/h (mass flow rate);
- ENGY FR m³/h (energy flow rate);

The results of the serial test are stored in Meter serial test report. The last 10 reports are retained in the archive of the flow computer.

The Meter serial test reports can be retrieved with UNIArchive software tool.

They can also be transferred to flash drive via the USB port of the flow computer. See 9.1.5. Sample report is shown in Annex A.

9.1.9 PID

See in Section 9.2.7.

9.2 Parameters

This chapter guides through the steps required to setup the UNIFLOW-200 for a particular flow measurement task. It gives the full list of options available for selection in the setup procedure.

UNIFLOW-200 is true multi function flow computer. Its capabilities allow configuring it for very wide range of applications. As a consequence the flow computer should be setup for each particular application. The setup is done in the Parameters menu.

Generally the setup is required only before the start-up of the unit. However modification of the parameters may become necessary during the normal operation of the flow computer as well. E. g. changing of the orifice bore diameter in case of orifice plate replacement, or, changing the turbine meter K-factor if the turbine meter is replaced are part of the normal daily operational procedure.

The setup can be done via keypad and display. The UNISetup software is also available at the web site of the manufacturer for download making the setup even more convenient and user friendly.

Entering the Parameters menu requires password. Logging in on Operator security level allows modification of limited set of parameters only. At Engineer level all the parameters are alterable. If operator logs in at Guest level then no parameter modification is allowed but all the parameters can be reviewed.

The signal processing and the flow calculation are not interrupted during the parameter editing. In the editing procedure:

- **OK** key accepts the new value of the parameter
- Save key stores the new value in a temporary location

The modified new parameters become active (i. e. the flow computer takes their value in the flow calculation) after the operator left the Parameters menu. Message "Parameter update in progress" is shown on the display when new parameters are activated.

The general rules of navigating the menu and editing data see in the Chapter 6.

It is recommended to setup the parameters in the orders as described in this chapter.

9.2.1 I/O signal setup

Route in the menu tree:

Parameters	I/O signals	I/O board m	Channel n	data page (2.1.m.n)
where: m	serial number of I/	O board		
п	serial number of cl	hannel on the bo	pard <i>m</i>	

There are 5 slots in the flow computer capable to accommodate any type of I/O board available. The setup parameters depend on the type of channel being configured. For example the analog input channel is configured in the same way regardless of its location on the ANI8 or ANI4PT2 board.

The physical parameters of the flow measurement and the input and output channels are not hard wired together in the flow computer. It is part of the setup procedure to assign the physical parameter (for example pressure) to the channel where the pressure transmitter signal is wired to (for example channel 1 on board 1).

The figures below show the settings for each type of channels.

First line of each data page indicates the number of board and channel being edited and the type of the I/O board.

CAUTION

If the channel status is inactive then the channel can not be used in the flow calculation even if you set all the parameters of the channel.

Do not forget to set the channel **active** if you want to use the signal measured at the channel in the flow calculation.

9.2.1.1 Analogue (4-20 mA) input channel

The analogue (4-20 mA) input channel data page is shown on the figure below.

Function of the F keys on the analogue (4-20 mA) input channel data page

- select the next field for editing
- **企** select the previous field for editing
- ⇒ remove the highlighted item from the eventing list and step to the next item

Change modify the selected data field

OK Confirm the selection

Save save the selected/entered data and returns to the parent menu.

1.I0/2.ch.	_	ANI8	1.I0/2.ch.						ANI8
Signal name	VORTEX		Error curve	na					
Signal type	Flowrate		L0_current				4	mĤ	
Unit	m³/h		HI_current				20	mĤ	
Error curve	no		L0_scale				0	m³/h	
L0_current	4 mA		HI_scale			10	00	m³/h	
HI_current	20 mA		LO_limit				0	m³/h	
L0_scale	0 m³/h		HI_limit			10	00	m³/h	
HI_scale	1000 m³/h		LOLO_limit				0	m³/h	
LO_limit	0 m³/h		HIHI_limit			10	00	m³/h	
HI_limit	1000 m³/h		Event at	lsc,	hsc	,lo,	hi,	lolo,	hihi
LOLO_limit	0 m³/h		Log	y	у	n	n	n	n
HIHI_limit	1000 m³/h		Eventing	у	У	n	n	n	n
E <u>vent at</u>	lsc,hsc,lo,hi,lolo,	hihi	<u>S</u> ignal status	ac	tiv	е			
Save Chan	ge CLD Cî		Save Char	ige) 🤇	1			1	

Figure 9-42 Analogue (4-20 mA) input channel data page

The editable fields on the data page are as follows:

• Signal name

Any character string up to 18 characters, for example: FIQ 501 pressure

- Signal type
- Unit

Supplementary parameter (depending on the signal type)

Type of the physical parameter measured at the channel, its unit of measurement and the supplementary parameter are selected from the list below:

- o Differential pressure;
 - mbar
 - Pa
 - kPA
 - inH2O
- o Flowrate;
 - m³/h
 - kg/h
 - GJ/h
 - MWh/h
 - MVA
 - MCF/h
 - CF/h
 - lb/h
 - MMBTU/h
 - bbl/h
 - Mlb/h

supplementary parameter: Error curve

> yes

supplementary parameter 2: error curve correction type

 linear interpolation, UVOLFR (m³/h) - Error (%)

\succ	no
---------	----

5.I0/6.c	h	ANI8	5.I0/6.c	h.	ANI8
Error c	urve linear	interpolation	4	983	0.639
	UVOLFR(m³∕h)-Error(%)	5	0	0
No.	flowrate	к	6	0	0
1	0	0	7	0	0
2	117	-0.812	8	0	0
3	479	-0.455	9	0	0
4	983	0.639	10	0	0
5	0	0	11	0	0
6	0	0	12	0	0
7	0	0	13	0	0
8	0	0	14	0	0
9	0	0	15	0	0
10	0	0	16	0	0
\leftarrow			\leftarrow	Change	

Figure 9-43 Error curve data page for flow rate signal

Error curve is available for the signals representing:

- volume flow rate at line conditions expressed in m³/h, MCF/h, CF/h, bbl/h
- mass flow rate expressed in kg/h, lb/h, Mlb/h

If the error curve correction is selected for the flow rate signal then new data page opens for entering the error curve points. The volume flow rate at line conditions (in m^3/h) or mass flow rate and the error at that flow rate shall be entered from the calibration certificate of the flow meter.

Maximum of 16 error curve point can be entered.

The flow rates shall be entered in increasing order.

- o Pressure;
 - bar
 - kPa
 - MPa
 - PSIA or PSIG depending on the gauge/absolute pressure transmitter selection

supplementary parameter: type of transmitter

- Gauge pressure
- ➢ Abs. pressure
- o Temperature;
 - °C
 - °F
- o Density;
 - kg/m³
 - lb/CF
 - RD

supplementary parameter: type of transmitter

➢ Line density

- ➢ Base density
- Relative density (unit changes to (none) for relative density)
- o Special (special signal);

- %

- mole%
- - (none)
- MJ/m³
- MJ/kg
- uS
- BTU/SCF
- lb/MMSCF
- o Kin. viscosity (kinematic viscosity);
 - mm^2/s
 - cSt
- o Level;
 - m
 - cm
 - mm
 - inch

supplementary parameters

- > Level equivalent (in level unit/mA)
- > Zero level (in level unit)

Common parameters for input channels regardless of the signal type

- LO_current (low scale of the current input);
- HI_current (high scale of the current input);
- LO_scale (low scale of the parameter in engineering unit);
- HI_scale (high scale of the parameter in engineering unit);
- LO_limit (low alarm limit);
- HI_limit (high alarm limit);
- LOLO_limit (low-low alarm limit);
- HIHI_limit (high-high alarm limit);
- Keypad value; Keypad value is not available for differential pressure, flow rate and level signals. See the activation of the Keypad value in section 9.3. Alarm and events
- Event at;

It can be selected here that which of the events shall initiate an entry in the event log file of the flow computer and which of the events shall generate event in the alarm system. The options are:

- o lsc (low scale);
- o hsc (high scale);
- lo (lo limit);
- o hi (hi limit);
- lolo (lolo limit);
- o hihi (hihi limit);
- Log;

• Eventing;

Selecting y(yes) in the "Log" line causes an entry shall be generated in the log file. Selecting n(no) in the Log line causes no entry is generated in the log file. In this case no y(yes) can be selected in the "Eventing" line

If in the "Log" line y (yes) is selected, then in the "Eventing" line y (yes) or n (no) can be selected, i.e. the operator can decide if the event generates event in the alarm system or not.

- Signal status
 - o **a**ctive;
 - o inactive;

NOTE

The input channels on the DEI4 I/OI board (input for transmitters communicating with Honeywell DE protocol) shall be setup in the same way as analogue (4-20 mA) channels with exception that no LO_current and HI_current parameters are available for these channels.

IMPORTANT

If the signal configured for any channel is to be used in flow calculation then the unit of measurement shall be selected as follows:

In case of metric unit system:

- pressure signal: bar
- differential pressure signal: mbar
- temperature signal: °C

In case of imperial unit system for gas measurement:

- pressure signal: PSIG or PSIA
- differential pressure signal: inH2O
- temperature signal: °F

9.2.1.2 PRT/RTD input channel

The PRT/RTD input channel data page is shown on the figure below.

Function of the F keys on the PRT/RTD input channel data page

- select the next field for editing
- 1 select the previous field for editing
- ⇒ remove the highlighted item from the eventing list and step to the next item

Change modify the selected data field

OK confirm the selection

Save save the selected/entered data and returns to the parent menu.

2.10/1.ch.	P	۲4	2.10/1.ch.						PT4
Signal name			В	-5.	775	00e	e-0'	7 1/°	'Ce2
RTD type	Pt100		С	-4.	183	00e	e-1:	2 1/°	Ce3
Unit	°C		L0_scale				-2	0°C	
RTD calibrated?	yes		HI_scale				5	0°C	
CVD constants	yes		LO_limit				-2	0°C	
RØ (ذC)	100 ohm		HI_limit				5	0°C	
A	0.0039082998 1/°C		LOLO_limit				-2	0°C	
В	-5.77500e-07 1/°Ce	2	HIHI_limit				5	0°C	
С	-4.18300e-12 1/°Ce	3	Keypad				-1	0°C	
L0_scale	-20 °C		Event at	lsc,	hsc	,lo	, hi ,	lolo,	hihi
HI_scale	50 °C		Log	у	У	n	n	n	n
LO_limit	-20 °C		Eventing	У	У	n	n	n	n
HI_limit	5 <u>0 °C</u>		Signal status		i	nac	tiv	e	
Save Chang			Save Chan	ge) (1	

Figure 9-44 PRT/RTD input channel data page

The editable fields on the data page are as follows:

Signal name

Any character string up to 18 characters, for example: FIQ 501 temperature

- RTD type
- o Pt100 (100 ohms at 0 °C) default value Pt500, Pt1000 and Pt50 on special request;
- Unit
- − °C
- °F
- RTD calibrated?
 - o yes;

If yes is selected then it is assumed that the Callendar - Van Dusen (CVD) coefficients are available for the sensor. In this case the CVD constants set to yes automatically and the R0, A, B and C can be edited.

o no;

If no is selected then the default value of the CVD coefficients (from EN 60751) are used to convert the measured resistance to temperature. If CVD constants set to yes then R0, A, B and C are displayed but can not be edited.

- CVD constants (according to EN 60751);
 - o yes;
 - o no;
- R0 (at 0 oC), default value = 100;
- A, default value = 3.9083e-3;
- B, default value = -5.775e-7;
- C, default value = -4.183e-12;
- LO_scale (low scale of the parameter in engineering unit);
- HI_scale (high scale of the parameter in engineering unit);
- LO_limit (low alarm limit);
- HI_limit (high alarm limit);
- LOLO_limit (low-low alarm limit);
- HIHI_limit (high-high alarm limit);

- Keypad value; see the activation of the Keypad value in section 9.3 Alarm and events
- Eventing;

It can be selected here that which of the events shall initiate an entry in the event log file of the flow computer and which of the events shall generate event in the alarm system. The options are:

- o lsc (low scale);
- o hsc (high scale);
- \circ 1 \circ (lo limit);
- o hi (hi limit);
- $\circ \quad \texttt{lolo} (\texttt{lolo limit});$
- o hihi (hihi limit);
- Log
- Eventing

Selecting y (yes) in the "Log" line causes an entry shall be generated in the log file. Selecting n (no) in the Log line causes no entry is generated in the log file. In this case no y (yes) can be selected in the "Eventing" line.

If in the "Log" line y(yes) is selected, then in the "Eventing" line y(yes) or n(no) can be selected, i.e. the operator can decide if the event generates event in the alarm system or not.

- Signal status
 - o active;
 - o inactive;

9.2.1.3 Pulse input channel

Depending on the selected signal type of the pulse input the physical parameter represented by the pulse and the data processing are different. The signal types are as follows:

• flow pulse;

Each pulse represents certain amount of fluid passed through the flow meter. The number of pulses is counted and converted into the totals with the K-factor of the flow meter.

• flow check pulse;

This type of pulse input is used to check the pulse train integrity from the flow meter to the flow computer. Flow check pulse input channel is selected in pair with flow pulse channel if the flow meter provides dual pulse output.

• flow frequency;

The frequency of the pulse signal is proportional with the flow rate measured by the meter. The flow computer converts the frequency to the flow rate using the low and high range values and the flow rate then totalized.

• density frequency;

The frequency is proportional to the density measured with the density transducer. The flow computer converts the frequency to the density according to the equation provided by the manufacturer of the densitometer.

The pulse input data page has different view depending on the signal type. The data pages for each signal type are shown below.

Function of the F keys on the pulse input channel data page

- select the next field for editing
- **企** select the previous field for editing

Change modify the selected data field

OK Confirm the selection

Save save the selected/entered data and returns to the parent menu.

- ⇒ remove the highlighted item from the eventing list and step to the next item
- ⇒ enter into error curve definition data page
- ⇐ left the error curve definition data page

3.I0/1.ch.	PDI0484 / FI1	3.10/1.ch.	PDI0484 / FI1
Signal name	TURBINE UVOL	Max. overload	120 ×
Signal type	Flow pulse	K-factor mode	pls/m ³
Unit	m³/h	K-factor	360 pls/m ³
Pulse transm.	Active 5V	Error curve	no
Min. UVOL FR	0 ×	LO_limit	0 m³/h
Max. UVOL FR	1000 m³/h	HI_limit	1000 m³/h
Max. overload	120 ×	LOLO_limit	0 m³/h
K-factor mode	pls/m ³	HIHI_limit	1000 m³/h
K-factor	360 pls/m ³	Event at	lo,hi,lolo,hihi
Error curve	no	Log	yynn
LO_limit	0 m³/h	Eventing	yynn
HI_limit	1000 m³/h	Live/Check signa	l Live
LOLO_limit	0_m³/h	<u>Signal status</u>	active
Save Chang		Save Chang	

Figure 9-45 Pulse input channel (signal type = flow pulse) data page

- Signal name
 - Any character string up to 18 characters, for example: FIQ 501 main pulse
- Signal type
 - o Flow pulse;
- Unit
 - o m3/h
 - o kg/h
 - o GJ/h
 - o MWh/h
 - o MVA
 - o MCF/h
 - o lb/h
 - o MMBTU/h
 - o bbl/h
 - o Mlb/h
- Pulse transm. (Pulse transmitter type)
 - o active 5 V;
 - o active 15 V;
 - o OC (open collector) (12 V);
 - o NAMUR
- Min. UVOL FR (low metering range of the flow meter, volume flow rate at line conditions, in % of the high metering range)

- Max. UVOL FR (high metering range of the flow meter, volume flow rate at line conditions)
- Max. overload (allowable overload of the flow meter in percent of the high metering range)
 K faster medei
- K-factor mode;
 - o pulse/unit (volume or mass or energy);
 - o unit/pulse;
- K-factor;
- Error curve;
 - o yes; (see error curve data page below if yes is selected)
 - o no;
- LO_limit (low alarm limit);
- HI_limit (high alarm limit);
- LOLO_limit (low-low alarm limit);
- HIHI_limit (high-high alarm limit);
- Eventing;

It can be selected here that which of the events shall initiate an entry in the event log file of the flow computer and which of the events shall generate event in the alarm system. The options are:

- lo (lo limit);
- o hi (hi limit);
- lolo (lolo limit);
- o hihi (hihi limit);
- Log
- Eventing

Selecting y(yes) in the "Log" line causes an entry shall be generated in the log file. Selecting n(no) in the Log line causes no entry is generated in the log file. In this case no y(yes) can be selected in the "Eventing" line.

If in the "Log" line y (yes) is selected, then in the "Eventing" line y (yes) or n (no) can be selected, i.e. the operator can decide if the event generates event in the alarm system or not.

- Live/check signal
 - o live;
 - Hz; (enter check signal is Hz)
 - o usec; (enter check signal is usec)
- Check signal; (displayed only if Live/check signal set to Hz or usec. This feature is provided for test purpose only. Do not forget to set the Live/check signal to "live" after the test to recover the normal operation of the flow computer.)
- Signal status
 - o active;
 - o inactive;

2.I0/1.c	ch. PDIO	484 / FI1	2	.I0/1.ch.	PDI0484 /	FI1
Error o	curve linear	interpolation		4	600	0.2
	UVOLFR(m	³∕h)-Error(%)		5	1000	-0.45
No.	flowrate	К		6	0	0
1	0	0		7	0	0
2	100	1.1		8	0	0
3	300	0.6		9	0	0
4	600	0.2		10	0	0
5	1000	-0.45		11	0	0
6	0	0		12	0	0
7	0	0		13	0	0
8	0	0		14	0	0
9	0	0		15	0	0
10	0	0		16	0	0
\leftarrow	Change				Change 🚺	

Figure 9-46 Error curve data page (signal type = flow pulse)

If the error curve correction is selected for the flow rate signal then new data page opens for entering the error curve points.

The editable fields on the error curve data page are as follows:

- Error curve type(*)
 - o linear interpolation;

Maximum of 16 error curve point can be entered in increasing order.

o polynomial;

The coefficients and the power of the polynomial shall be entered up to 6th power. In any of the above two cases the independent and the dependent variable of the error curve selected from the list:

- o UVOLFR (m^3/h) Error (%);
- o frequency (Hz) K-factor (pulse/m3); (**)
- o UVOLFR (m³/h) K-factor (pulse/m3);

```
o log(UVOLFR/visc (m3/h/cSt) - K-factor (pulse/m3);
```

(*) error curve is available for the units m³/h, kg/h, MCF/h, lb/h, bbl/h, Mlb/h.

(**) only if linear interpolation is selected

2.I0/2.ch.	PDI0484 / FI2
Signal name	TURBINE FLOW CHECK
Signal type	Flow check pulse
Unit	m³∕h
Pulse transm.	Active 5V
K-factor mode	pls∕m³
K-factor	3600 pls∕m³
Live/Check signa	al Live
Signal status	active
Save Chang	

Figure 9-47 Pulse input channel (signal type = flow check pulse) data page

The editable fields on the data page are as follows:

- Signal name Any character string up to 18 characters, for example: FIQ 501 check pulse
- Signal type
 - o Flow check pulse;
- Unit
 - o m3/h
 - o kg/h
 - o GJ/h
 - o MWh/h
 - o MVA
 - o MCF/h
 - o lb/h
 - o MMBTU/h
 - o bbl/h
 - o Mlb/h
- Pulse transm. (Pulse transmitter type)
 - o active 5 V;
 - o active 15 V;
 - o open collector (12 V);
 - O NAMUR
- K-factor mode;
 - o pulse/unit (volume or mass or energy);
 - o unit/pulse;
- K-factor;
- Live/check signal
 - o live;
 - o Hz; (enter check signal is Hz)
 - o usec; (enter check signal is usec)
- Check signal; (displayed only if Live/check signal set to Hz or usec. This feature is provided for test purpose only. Do not forget to set the Live/check signal to "live" after the test to recover the normal operation of the flow computer.)

Signal status

- o active;
- o inactive;

3.10/3.ch.	PDI0484 / FI3	3.10/3.ch.]	PDI	0484	/ FI3
Signal name	TURBINE UVOL	L0_frequency				0	Hz	
Signal type	Flow frequency	HI_frequency			10	90	Hz	
Unit	m ³ /h	L0_scale				0	m³/h	
Pulse transm.	Active 5V	HI_scale			10	90	m³/h	
Error curve	no	LO_limit				0	m³/h	
L0_frequency	0 Hz	HI_limit			10	90	m³/h	
HI_frequency	1000 Hz	LOLO_limit				0	m³/h	
L0_scale	0 m³/h	HIHI_limit			10	90	m³/h	
HI_scale	1000 m³/h	Event at	lsc	,hsc	,lo,	hi	,lolo	,hihi
LO_limit	0 m³/h	Log	У	У	n	n	n	n
HI_limit	1000 m³/h	Eventing	У	У	n	n	n	n
LOLO_limit	0 m³/h	Live/Check signal	L		Li	ve		
H <u>IHI_limi</u> t	<u> 100</u> 0 m³/h	Signal status		a	cti	ve		
Menu		Menu					C í	

Figure 9-48 Pulse input channel (signal type = flow frequency) data page

- Signal name Any character string up to 18 characters, for example: FIQ 501 frequency
- Signal type
 - o Flow frequency;
- Unit
 - o m3/h
 - o kg/h
 - o GJ/h
 - o MWh/h
 - o MVA
 - o MCF/h
 - o lb/h
 - o MMBTU/h
 - o bbl/h
 - o Mlb/h
- Pulse transm. (Pulse transmitter type)
 - o active 5 V;
 - o active 15 V;
 - o open collector (12 V);
 - o NAMUR
- Error curve;
 - o yes; (see error curve data page below if yes is selected)
 - o no;
- LO_Hz (low scale of the frequency input);
- HI_Hz (high scale of the frequency input);
- LO_scale (low scale of the parameter in engineering unit);
- HI_scale (high scale of the parameter in engineering unit);
- LO_limit (low alarm limit);
- HI_limit (high alarm limit);
- LOLO_limit (low-low alarm limit);
- HIHI_limit (high-high alarm limit);

• Eventing;

It can be selected here that which of the events shall initiate an entry in the event log file of the flow computer and which of the events shall generate event in the alarm system. The options are:

- lo (lo limit);
- o hi (hi limit);
- o lolo (lolo limit);
- o hihi (hihi limit);
- Log
- Eventing

Selecting y (yes) in the "Log" line causes an entry shall be generated in the log file. Selecting n (no) in the Log line causes no entry is generated in the log file. In this case no y (yes) can be selected in the "Eventing" line.

If in the "Log" line y (yes) is selected, then in the "Eventing" line y (yes) or n (no) can be selected, i.e. the operator can decide if the event generates event in the alarm system or not.

- Live/check signal
 - o live;
 - o Hz; (enter check signal is Hz)
 - o usec; (enter check signal is usec)
- Check signal; (displayed only if Live/check signal set to Hz or usec. This feature is provided for test
 purpose only. Do not forget to set the Live/check signal to "live" after the test to recover the normal
 operation of the flow computer.)
- Signal status
 - o active;
 - o inactive;

2.I0/1.ch	. PD104	84 / FI1	2.I0/1.ch.	PDI0484 /	' FI1
Error cu	rve linear i	nterpolation	4	600	0.2
	UVOLFR(m³/	h)-Error(%)	5	1000	-0.45
No.	flowrate	к	6	0	0
1	0	0	7	0	0
2	100	1.1	8	0	0
3	300	0.6	9	0	0
4	600	0.2	10	0	0
5	1000	-0.45	11	0	0
6	0	0	12	0	0
7	0	0	13	0	0
8	0	0	14	0	0
9	0	0	15	0	0
10	0	0	16	0	. 0
\leftarrow	Change 🗸 🗸			Change 🛛 🛶 🚽	

Figure 9-49 Error curve data page (signal type = flow frequency)

If the error curve correction is selected for the flow rate signal then new data page opens for entering the error curve points.

The editable fields on the error curve data page are as follows:

• Error curve type (*)

o linear interpolation;

Maximum of 16 error curve point can be entered in increasing order.

o polynomial;

The coefficients and the power of the polynomial shall be entered up to 6th power. In any of the above two cases the independent and the dependant variable of the error curve selected from the list:

o UVOLFR (m^3/h) - Error (%);

```
o frequency (Hz) - K-factor (pulse/m3); (**)
```

```
o UVOLFR (m<sup>3</sup>/h) - K-factor (pulse/m3);
```

o log(UVOLFR/visc (m3/h/cSt) - K-factor (pulse/m3);

(*) error curve is available for the units m³/h, kg/h, MCF/h, lb/h, bbl/h, Mlb/h.

(**) only if linear interpolation is selected

3.10/3.ch.	PDI0484 / FI3	3.10/3.ch.	PDI0484 / FI3
Signal name DE	NSITY1	K21A -0.0044	K21B -8.0000e-04
Signal type De	nsity	L0_scale	500 kg/m ³
Unit	kg/m ³	HI_scale	1100 kg/m ³
Pulse transm.	Active 5V	LO_limit	500 kg/m ³
Transm. type Sol	latron7835	HI_limit	1100 kg/m ³
Density const.		LOLO_limit	500 kg/m ³
К 1	KØ –1322	HIHI_limit	1100 kg/m ³
K1 -0.125	K2 0.003753	Keypad	780 kg/m ³
K18 -2.6000e-05	K19 -0.0065	Event at lso	c,hsc,lo,hi,lolo,hihi
K20A -3.3000e-06	K20B -6.0000e-07	Log y	y nn nn
K21A -0.0044	K21B -8.0000e-04	Eventing y	y n n n n
L0_scale	500 kg/m ³	Live/Check signal	Live
HI_scale_	1100 kg/m ³	Signal status	active
Menu		Menu	

Figure 9-50 Pulse input channel (signal type = density frequency) data page

The editable fields on the data page are as follows:

Signal name

Any character string up to 18 characters, for example: FIQ 501 density

- Signal type
 - o Density;
- Unit
 - o kg/m3
 - o lb/CF
 - o RD
- Pulse transm. (Pulse transmitter type)
 - o active 5 V;
 - o active 15 V;
 - o open collector (12 V);
 - O NAMUR
- Density transmitter type
 - o linear;
 - o Solatron 3096R; (unit changes to (none) for relative density)
 - o Solatron 3096N;
 - o Solatron 7812;

- o Solatron 7835;
- Density cnst (constants for the density transducers from the calibration certificate)
 - Solatron 3096R K0, K2;
 - Solatron 3096N K0, K2;
 - Solatron 7812 K0, K1, K2, K3, K4, K18, K19;
 - Solatron 7835 K, K0, K1, K2, K3, K4, K18, K19, K20A, K20B, K21A, K21B; (K is a generals purpose scale parameter)
- LO_scale (low scale of the parameter in engineering unit);
- HI_scale (high scale of the parameter in engineering unit);
- LO_limit (low alarm limit);
- HI_limit (high alarm limit);
- LOLO_limit (low-low alarm limit);
- HIHI_limit (high-high alarm limit);
- Keypad value; see the activation of the Keypad value in section 9.3 Alarm and events
- Event at;

It can be selected here that which of the events shall initiate an entry in the event log file of the flow computer and which of the events shall generate event in the alarm system. The options are:

- o lsc (low scale);
- o hsc (high scale);
- lo (lo limit);
- o hi (hi limit);
- o lolo (lolo limit);
- o hihi (hihi limit);
- Log
- Eventing

Selecting y (yes) in the "Log" line causes an entry shall be generated in the log file.

Selecting n(no) in the Log line causes no entry is generated in the log file. In this case no y(yes) can be selected in the "Eventing" line.

If in the "Log" line y (yes) is selected, then in the "Eventing" line y (yes) or n (no) can be selected, i.e. the operator can decide if the event generates event in the alarm system or not.

- Live/check signal
 - o live;
 - Hz; (enter check signal is Hz)
 - o usec; (enter check signal is usec)
- Check signal; (displayed only if Live/check signal set to Hz or usec. This feature is provided for test purpose only. Do not forget to set the Live/check signal to "live" after the test to recover the normal operation of the flow computer.)
- Signal status
 - o active;
 - o inactive;

9.2.1.4 Digital input channel

Depending on the selected signal type of the digital (2-state) input the parameters and the data pages are different. The signal types are as follows:

• Dual state;

It is used to indicate two status of any equipment (for example valve) represented by an open and closed state of a contact.

• Pulse;

It is used to totalize the flow by counting low frequency (50 Hz maximum) pulse train from flow meter.

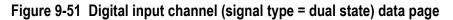
The data pages for each signal type show below.

Function of the F keys on the digital input channel data page

select the next field for editing

f select the previous field for editing

Change modify the selected data field


OK Confirm the selection

Save save the selected/entered data and returns to the parent menu.

⇒ remove the highlighted item from the eventing list and step to the next item

2.I0/5.ch.	PDI0484 / DI1
Signal name	VALVE OPENED
Signal type	Dual state
Type of contact	NC
Event when	entering into state
Log	yes
Eventing	yes
Signal status	active
Log Eventing	yes yes

- Signal name
 - Any character string up to 18 characters, for example: FV 501 valve status
- Signal type
 - o Dual state;
- Type of contact
 - NO (normally open);
 - NC (normally closed);
- Event when
 - o entering into state;
 - o exiting from state;

- o at changing state;
- Log
 - o yes;
 - o no;
- Eventing; (generate event in the event log of the flow computer)
 - o yes;
 - o no;
- Signal status
 - o active;
 - o inactive;

2.10/7.ch. Signal name	PDI0484 ∕ DI3
Signal type	Pulse
Unit	m ³
Type of contact	NO
K-factor mode	m³∕pls
K-factor	1 m³∕pls
Filter const.1	0
Filter const.2	0
Signal status	active
Save Chang	

Figure 9-52 Digital input channel (signal type = pulse) data page

- Signal name
 - Any character string up to 18 characters, for example: FIQ 501 pulse
- Signal type
 - o Pulse;
- Unit
 - o m3;
 - o kg;
 - o GJ;
 - o MWh;
 - o MVAh;
 - o MCF;
 - o lb;
 - o MMBTU;
 - o bbl;
 - o Mlb
- Type of contact
 - NO (normally open);
 - NC (normally closed);
- K-factor mode;

- o pulse/unit (volume or mass or energy);
- o unit/pulse;
- K-factor;
- Filter constant 1
- Filter constant 2

Filter constant are to apply digital filtering to the low frequency input signal.

0 < Filter constant < 1. If Filter constant = 0 then filter is switched off.

Recommended value for the filter constant depending on the time constant of the process is according to the table below:

Time constant (s)	Filter constant
1	0.3935
5	0.0952
10	0.0488
30	0.0165
60	0.0083

- Signal status
 - o active;
 - o inactive;

9.2.1.5 Digital output channel

Depending on the selected signal type of the digital (2-state) output channel the parameters and the data pages are different. The signal types are as follows:

Pulse;

It is used to provide pulse output proportional to any total of any metering stream.

- STR FR alarm (stream flow rate alarm); It is used to provide alarm output for any flow rate of any metering stream.
- STR fault alarm (stream in fault state); It is used to provide alarm output for a particular stream it the stream is in fault state.
- Analog input alarm (for any analogue input); It is used to provide alarm output for any analogue input signal limit.
- Digital input alarm (for any digital input); It is used to provide alarm output for any digital input.
- Common alarm; It is used to provide alarm output in case of general process alarm is active.
- Time base; It is used to provide pulses as time base for any external equipment.
- Batch control; It is used to control the batching process.

The data pages for each signal type show below.

Function of the F keys on the digital output channel data page

- select the next field for editing
- f select the previous field for editing

Change modify the selected data field

OK Confirm the selection

Save save the selected/entered data and returns to the parent menu.

⇒ remove the highlighted item from the eventing list and step to the next item

2.I0/13.ch.	PDI0484 / D0	1
Signal name	STREAM1 CVOL FR	
Signal type	Pulse	
Type of contact	NO	
Stream number	1	
Stream param.	CVOL	
K-factor mode	m³∕pls	
K-factor	1 m³∕pls	
Pulse length	1 ≭10 msec.	
Interpulse gap	1 ≭10 msec.	
Signal status	active	
Save Chang)

Figure 9-53 Digital output channel (signal type = pulse) data page

The editable fields on the data page are as follows:

- Signal name
 - Any character string up to 18 characters, for example: FIQ 501 energy
- Signal type
 - o Pulse;
- Type of contact
 - NO (normally open);
 - NC (normally closed);
- Stream number; (from 1 to 12)
- Stream parameter;
 - CVOL; (volume at base conditions);
 - o UVOL; (volume at line conditions);
 - o MASS (mass);
 - ENGY(energy);
- K-factor mode;
 - o pulse/unit;
 - o unit/pulse;

unit can be m3; kg or GJ depending on the stream parameter selected

- K-factor;
- Pulse length; (in 10 ms)
- Interpulse gap; (in 10 ms)

• Signal status

- o active;
- o inactive;

3.10/13.ch.	PDI0484 / D01
Signal name	STR 1 HI limit
Signal type	STR FR alarm
Stream number	1
Type of contact	NO
Event to alarm	– hi
Delay	10 sec.
Signal status	active
Menu	

Figure 9-54 Digital output channel (signal type = STR FR alarm) data page

The editable fields on the data page are as follows:

- Signal name
 - Any character string up to 18 characters, for example: FIQ 501 CVOL FR
- Signal type
 - o STR FR alarm;
- Stream number; (from 1 to 12)

The type of the flow rate (UVOL FR, CVOL FR, MASS FR, ENGY FR) and the value of the lolo, lo, hi, hihi limits are set in the stream definition section. See 9.2.2.1.5.

- Type of contact
 - NO (normally open);
 - NC (normally closed);
- Event to alarm;

It can be selected here that which of the events shall cause an alarm in the flow computer. The options are:

- o (none)
- lo (lo limit);
- o hi (hi limit);
- o lolo (lolo limit);
- o hihi (hihi limit);
- Type of contact
 - NO (normally open);
 - NC (normally closed);
- Delay; (in seconds)
- Signal status

- o active;
- o inactive;

2.10/14.ch.	A0DI0484 / D02
Signal name	FT001b fault
Signal type	STR fault
Strean number	2
Type of contact	NO
Delay	0 sec.
Signal status	active
Menu	

Figure 9-55 Digital output channel (signal type = STR fault alarm) data page

- Signal name
 - Any character string up to 18 characters, for example: FT001b
- Signal type
 - o STR fault;
- Stream number; (from 1 to 12)
- Type of contact
 - NO (normally open);
 - NC (normally closed);
- Delay; (in seconds)
- Signal status
 - o active;
 - o inactive;

2.I0/15.ch.	PDI0484 / D03
Signal name	STR1 PRES LO lim
Signal type	Analog input alarm
Type of contact	NO
Input signal	1 board 3 ch.
Event to alarm	lsc -
Delay	2 sec.
Signal status	active
Save Chang	

Figure 9-56 Digital output channel (signal type = Analog input alarm) data page

- Signal name
 - Any character string up to 18 characters, for example: FIQ 501 temperature
- Signal type
 - o Analog input alarm;
- Type of contact
 - NO (normally open);
 - NC (normally closed);
- Input signal I/O board X channel Y
- Event to alarm
 - o lsc (low scale);
 - o hsc (high scale);
 - o lo (lo limit);
 - o hi (hi limit);
 - o lolo (lolo limit);
 - o hihi (hihi limit);
- Delay; (in s)
- Signal status
 - o active;
 - o inactive;

2.I0/16.ch.	PDI0484 / D04
Signal name	VALVE CLOSED
Signal type	Digital input alarm
Type of contact	NO
Input signal	2 board 6 ch.
Delay	5 sec.
Signal status	active
OK	

The editable fields on the data page are as follows:

- Signal name Any character string up to 18 characters
- Signal type
 - o Digital input alarm;
- Type of contact
 - NO (normally open);
 - NC (normally closed);
- Input signal I/O board X channel Y
- Delay; (in s)
- Signal status
 - o active;
 - o inactive;

2 10 42 -1	AODIO484 / DO1
3.I0/13.ch.	
Signal name	COMMON-ERROR
Signal type	Common alarm
Type of contact	NO
Delay	Ø sec.
Signal status	active
Save Chang	

Figure 9-58 Digital output channel (signal type = Common alarm) data page

- Signal name
 - Any character string up to 18 characters, for example: COMMON alarm

- Signal type
 - o Common alarm;
- Type of contact
 - NO (normally open);
 - NC (normally closed);
- Delay; (in seconds)
- Signal status
 - o active;
 - o inactive;

3.I0/16.ch.	AODIO484 / DO4
Signal name	TIME BASE
Signal type	Time base
Type of contact	NO
Period time	1 sec.
Pulse length	1 sec.
Start	08.05.14 yy.mm.dd
	14:00 hh.mm
Signal status	active

Figure 9-59 Digital output channel (signal type = Time base) data page

Save Change 🗸 🚺

- Signal name
 - Any character string up to 18 characters, for example: TIME BASE
- Signal type
 - o Time base;
- Type of contact
 - NO (normally open);
 - NC (normally closed);
- Period time; (in seconds)
- Pulse length; (in seconds)
- Start at yy.mm.dd hh:mm
 - nn:mn Listatus
- Signal status
 - o active;
 - o inactive;

3.10/16.ch. Signal name	P	DI0484 / D04
Signal type	Batch contr	ol
Stream number	1	
Type of contact	NO	
Delay	0	sec.
Signal status	active	
Save Chang		

Figure 9-60 Digital output channel (signal type = Batch control) data page

The editable fields on the data page are as follows:

- Signal name
 - Any character string up to 18 characters, for example: LOADING
- Signal type
 - o Batch control;
- Stream number (stream serial number the digital output is assigned to)
- Type of contact
 - NO (normally open);
 - NC (normally closed);
- Delay; (in seconds)
- Signal status
 - o active;
 - o inactive;

9.2.1.6 Analogue (4-20 mA) output channel

The analogue (4-20 mA) data page is shown on the figure below.

Function of the F keys on the analogue (4-20 mA) output channel data page

- ♣ select the next field for editing
- **企** select the previous field for editing

⇒ remove the highlighted item from the eventing list and step to the next item

Change modify the selected data field

OK Confirm the selection

Save save the selected/entered data and returns to the parent menu.

4.I0/1.ch.	A0DI0484 / A01	4.I0/1.ch.	A0DI0484 / A01
Signal name	CVOL M1	Stream param.	CVOL flowrate
Assignment	STR flowrate	L0_current	4 mA
Stream number	1	HI_current	20 mA
Stream param.	CVOL flowrate	L0_scale	0 m³/h
L0_current	4 mA	HI_scale	20000 m³/h
HI_current	20 mA	LO_limit	0 m³/h
L0_scale	0 m³/h	HI_limit	2000 m³/h
HI_scale	20000 m³/h	LOLO_limit	0 m³/h
LO_limit	0 m³/h	HIHI_limit	20 m³/h
HI_limit	20000 m³/h	Event at	lsc,hsc,lo,hi,lolo,hihi
LOLO_limit	0 m³/h	Log	y y n n n n
HIHI_limit	20 m³/h	Eventing	y y n n n n
E <u>vent at</u>	lsc, <u>hsc,lo,</u> hi, <u>lolo,hih</u> i	Signal status	active
Menu		Menu	

Figure 9-61 Analogue (4-20 mA) output channel data page

The editable fields on the data page are as follows:

- Signal name
 - Any character string up to 18 characters, for example: FIQ 501 flow rate
- Assignment
 - o STR flowrate (stream flow rate);
 - Stream no;
 - Stream parameter;
 - CVOL FR; (volume flow rate at base conditions);
 - UVOL FR; (volume flow rate at line conditions);
 - MASS FR (mass flow rate);
 - ENGY FR (energy flow rate);
 - o Input signal;
 - Input signal X I/O board Y Channel
 - o Modbus signal;
 - Channel X
 - PID CO (PID loop control output);
- LO_current (low scale of the current output);
- HI_current (high scale of the current output);
- LO_scale (low scale of the parameter in engineering unit);
- HI_scale (high scale of the parameter in engineering unit);
- LO_limit (low alarm limit);
- HI_limit (high alarm limit);
- LOLO_limit (low-low alarm limit);
- HIHI_limit (high-high alarm limit);
- Event at;

t can be selected here that which of the events shall initiate an entry in the event log file of the flow computer and which of the events shall generate event in the alarm system. The options are:

- o lsc (low scale);
- o hsc (high scale);
- lo (lo limit);

- o hi (hi limit);
- o lolo (lolo limit);
- o hihi (hihi limit);
- Log
- Eventing

Selecting y (yes) in the "Log" line causes an entry shall be generated in the log file. Selecting n (no) in the Log line causes no entry is generated in the log file. In this case no y (yes) can be selected in the "Eventing" line.

If in the "Log" line y (yes) is selected, then in the "Eventing" line y (yes) or n (no) can be selected, i.e. the operator can decide if the event generates event in the alarm system or not.

- Signal status
 - o active; o inactive;

9.2.1.7 HART signal input channel

The HART signal input channel data page is shown on the figure below.

Function of the F keys on HART input channel data page

- select the next field for editing
- f select the previous field for editing
- ⇒ remove the highlighted item from the eventing list and step to the next item

Change modify the selected data field

OK Confirm the selection

Save save the selected/entered data and returns to the parent menu.

4.I0/1.ch.	HTI4×15	4.10/1.ch.	HTI4×15
No of Hart loops	1	Transm. addr.	1
Mode	multidrop	PV index	1
Transm. addr.	1	Signal name	
PV index	1	Signal type	Diff. pressure
Signal name		Unit	mbar
Signal type	Diff. pressure	L0_scale	0 mbar
Unit	mbar	HI_scale	0 mbar
L0_scale	0 mbar	LO_limit	600 mbar
HI_scale	0 mbar	HI_limit	0 mbar
LO_limit	600 mbar	LOLO_limit	0 mbar
HI_limit	0 mbar	HIHI_limit	0 mbar
LOLO_limit	0 mbar	Eventing	_lsc,hsc
H <u>IHI_limit</u>	0_mbar	<u>Signal stat</u> us	active
Save Change		Save Chan	

Figure 9-62 HART input channel data page

- HART loop number; (from 1 to 4)
- Transmitter address; (from 0 to 15)

If address 0 is selected then only one single transmitter can be connected on one loop. In this case transmitter provides both current output and HART output.

If any address from 1 to 15 is selected then the transmitter signal available on HART only.

- PV index (from 1 to 4) The maximum number of PV indexes in one loop is 15. See details on the HART transmitter connections in Annex C.
- Signal name Any character string up to 18 characters, for example: FIQ 501 pressure
- Signal type
- Unit
- Supplementary parameter (depending on the signal type)

The signal type (type of the physical parameter measured at the channel), its unit of measurement and the supplementary parameter are selected from the list below:

- o Differential pressure;
 - mbar
 - Pa
 - kPa
 - inH2O
- o Flowrate;
 - m³/h
 - kg/h
 - GJ/h
 - MWh/h
 - MVA
 - MCF/h
 - lb/h
 - MMBTU/h
 - bbl/h
 - Mlb/h

supplementary parameter: Error curve

> yes

supplementary parameter 2: error curve correction type

- linear interpolation,
- UVOLFR (m³/h) Error (%)
- ≻ no

5.IO/1.	ch.	HTI4×15	5.I0/1.ch.		HTI4x15
Error		erpolation	4	0	0
	UVOLFR(m³/h)	-Error(%)	5	0	0
No.	flowrate	К	6	0	0
1	0	0	7	0	0
2	0	0	8	0	0
3	0	0	9	0	0
4	0	0	10	0	0
5	0	0	11	0	0
6	0	0	12	0	0
7	0	0	13	0	0
8	0	0	14	0	0
9	0	0	15	0	0
10	0	0	16	0	0
\leftarrow				Change	

Figure 9-63 Error curve data page for flow rate signal

If the error curve correction is selected for the flow rate signal then new data page opens for entering the error curve points. The volume flow rate at line conditions (in m^3/h) and the error (in %) at that flow rate shall be entered from the calibration certificate of the flow meter.

Maximum of 16 error curve point can be entered.

The flow rates shall be entered in increasing order.

- o Pressure;
 - bar
 - kPa
 - MPa
 - PSIA or PSIG depending on the gauge/absolute pressure transmitter selection

supplementary parameter: type of transmitter

- ➢ Gauge pressure
- ➢ Abs. pressure
- o Temperature;
 - °C
 - °F
- o Density;
 - kg/m³
 - Ib/CF
 - RD

supplementary parameter: type of transmitter

- > Line density
- ➢ Base density
- Relative density (unit changes to (none) for relative density)
- o Special (special signal);
 - %
 - mole%
 - - (none)
 - MJ/m³

- MJ/kg
- uS
- BTU/SCF
- lb/MMSCF
- o Kin. viscosity (kinematic viscosity);
 - mm^2/s
 - cSt
- o Level;
 - cm
 - m
 - mm
 - inch

supplementary parameters

- Level equivalent (in level unit/mA)
- > Zero level (in level unit)

Common parameters for input channels regardless of the signal type

- LO_current (low scale of the current input);
- HI_current (high scale of the current input);
- LO_scale (low scale of the parameter in engineering unit);
- HI_scale (high scale of the parameter in engineering unit);
- LO_limit (low alarm limit);
- HI_limit (high alarm limit);
- LOLO_limit (low-low alarm limit);
- HIHI_limit (high-high alarm limit);
- Keypad value; Keypad value is not available for differential pressure, flow rate and level signals. See the activation of the Keypad value in section 9.3. Alarm and events
- Event at;

It can be selected here that which of the events shall initiate an entry in the event log file of the flow computer and which of the events shall generate event in the alarm system. The options are:

- o lsc (low scale);
- o hsc (high scale);
- lo (lo limit);
- o hi (hi limit);
- o lolo (lolo limit);
- o hihi (hihi limit);
- Log
- Eventing

Selecting y (yes) in the "Log" line causes an entry shall be generated in the log file. Selecting n (no) in the Log line causes no entry is generated in the log file. In this case no y (yes) can be selected in the "Eventing" line.

If in the "Log" line y (yes) is selected, then in the "Eventing" line y (yes) or n (no) can be selected, i.e. the operator can decide if the event generates event in the alarm system or not.

• Signal status

- o active;
- o inactive;

IMPORTANT

If the signal configured for a channel is to be used in flow calculation then the unit of measurement shall be selected as follows:

In case of metric unit system:

- pressure signal: bar
- differential pressure signal: mbar
- temperature signal: °C

In case of imperial unit system for gas measurement:

- pressure signal: PSIG or PSIA
- differential pressure signal: inH2O
- temperature signal: °F

9.2.1.8 Modbus signal channel

There are 30 Modbus channels available in UNIFLOW-200. They can be configured as input channels

The Modbus channels can be used and shall be setup in the same way as the corresponding input channels. They can be written via the serial and Ethernet link of the flow computer.

The address range of the general purpose Modbus registers is 4000, 4002, 4004, ..., 4058 (30 registers). Data type to be written into these registers is 4 byte floating point data. See 10.4.3.4 for floating point data representation.

There are some special predefined Modbus registers used in the serial communication with the ultrasonic meters as follows:

- registers with address 2700 holds the volume flow rate at line conditions read from the ultrasonic meter on com 1 port;
- registers with address 2708 holds the volume flow rate at line conditions read from the ultrasonic meter on com 2 port;
- registers with address 2716 holds the volume flow rate at line conditions read from the ultrasonic meter on com 3 port;

The Modbus channels used as input channel for flow measurement with ultrasonic meters shall be setup to one of the above register address, depending on the com port the meter connected to.

Function of the F keys on the Modbus channel data page

- ♣ select the next field for editing
- **企** select the previous field for editing

⇒ remove the highlighted item from the eventing list and step to the next item

Change modify the selected data field

OK Confirm the selection

Save save the selected/entered data and returns to the parent menu.

Modbus signal set	up 1 ch.		Modbus signal s	etup 1 ch.
Register mode	STD Modbus		Signal type	Flowrate
Register address	2716		Unit	m³/h
Regist.upd.tout.	1	sec	Error curve	no
Signal name 🛛 F	LOWSIC-600		L0_scale	0 m³/h
Signal type	Flowrate		HI_scale	1000 m³/h
Unit	m³/h		LO_limit	0 m³/h
Error curve	no		HI_limit	1000 m³/h
L0_scale	0	m³/h	LOLO_limit	0 m³/h
HI_scale	1000	m³/h	HIHI_limit	1000 m³/h
LO_limit	0	m³/h	Event at	lsc,hsc,lo,hi,lolo,hihi
HI_limit	1000	m³/h	Log	y y n n n n
LOLO_limit	0	m ³ /h	Eventing	y y n n n n
HIHI_limit	1000	m ³ /h	Signal status	active
Menu			Menu	

Figure 9-64 Modbus channel data page

The Modbus specific editable fields on the data page are as follows:

- Register address;
- Update timeout;

All of the other parameters for Modbus channels are identical with those of the corresponding input channels.

IMPORTANT

If the channel status is inactive then the channel cannot be used in the flow calculation even if you set all the parameters of the channel.

Do not forget to set the channel active if you want to use the signal measured at the channel in the flow calculation.

9.2.2 Stream setup

After all the field I/O signals required for the particular application are setup and configured the metering streams should be setup.

There are different procedure for setting up physical streams (streams measuring real fluid flow) and virtual streams (streams calculated from the flows of physical streams).

The stream setup in case of physical streams is done in four steps in four different submenus of the parameters menu.

First the fluid to be measured is selected and the physical properties of the fluid shall be defined.

In the second step the flow meter is selected and the parameters of the flow meter shall be entered.

In third step the field I/O signals assigned to the measured input parameters required for flow calculation. In last step the premium limits are setup for the stream.

Setup procedure for the virtual stream includes the definition of the equation for the flow calculation and the setup of the premium limits.

Entering the physical stream menu item data page appears on the display. The serial number of the stream to be edited shall be selected and the identifier of the stream can be entered. The identifier is a 24 character long alphabetical string.

Note

The identifier of the stream will be part of the file name the archive data stored in.

9.2.2.1 Physical stream setup

Route in the menu tree:

Parameters	Streams	Physical stream			

Main menu Parameters Stream	Physical stream -Virtual stream -Prem. mode setup -Fault mode setup Barometric press. -Averaging -Totals format	Physical st Stream No. Str. name Unit	
		Save	Change

The system of units shall be selected on this page. Available selections are:

```
o metric units;
```

o imperial units;

Note:

If the "imperial units" is selected then the fluid selection shall be:

```
"Hydrocarbon mixture / Natural gas, Coke oven gas, Blast furnace gas"or
```

"Liquid / Crude oil & products"

No other fluids are supported in imperial units.

```
In case of "imperial units" the base conditions can be selected as follows:
```

For gases:

o base temperature = 59, 60 °F; o base pressure = 14.4, 14.5, 14.65, 14.696, 14.7, 14.73, 15.025 PSIA

For liquids:

- o base temperature = 60 $^{\circ}$ F;
- o base pressure = 0 PSIG

9.2.2.1.1 Fluid selection

After the stream is selected the fluid and its properties shall be defined.

Depending on the fluid selected the fluid specific data page appears.

The figures in this chapter explain the parameters of the different fluid to be defined and the options available for selection.

9.2.2.1.1.1 Hydrocarbon mixtures

There are three predefined hydrocarbon mixture can be selected:

- o Natural gas;
- o Coke oven gas;
- o Blast furnace gas.

The data pages for each of them are shown in the paragraphs below.

9.2.2.1.1.1.1 Natural gas

Route in the m	nenu tree:			
Parameters	Streams	Physical stream	Stream n.	
		Fluid	Hydrocarb. miixture	Natural gas

The natural gas data page is shown on the figure below.

Function of the F keys on the Natural gas data page

- select the next field for editing
- **①** select the previous field for editing
- ⇒ enter into submenu for gas composition editing

Change modify the selected data field

OK Confirm the selection

Save save the selected/entered data and returns to the parent menu.

01.Str. NGAS-ORIFICE			01.Str. NGAS-ORIFICE		
Fluid	Natural gas		Fluid	Natural gas	
Base temperature	15	С	Rel. density mode	IS06976	
Base pressure	1.01325	bar	Inf.cal.val. mode	IS06976	
Chromat. polling	no		Sup.cal.val. mode	IS06976	
Gas composition	detailed		Velocity of sound	ISO 20765-1	
Comp.downl.timeout	600	sec	Compr.fact.mode	AGA8/92DC	
Line density mode	PTZ		Combust.ref.temp.	15 C	
Base density mode C	alc.from rel.		Dynamic visc.mode	GOST 30319.1-96	
Rel. density mode	IS06976		Isentr. exp. mode	GOST 30319.1-96	
Inf.cal.val. mode	IS06976		J-T coefficient	keypad	
Sup.cal.val. mode	IS06976		keypad value	0.4 °C/bar	
Velocity of sound	ISO 20765-1		Eventing gas comp.	yes	
Compr.fact.mode	AGA8/_92DC		Energy calc. from	sup.cal.value	
Save Change			Save Change		

Figure 9-66 Natural gas data page (metric example)

01.Str. NGAS-ORIFIC	Е		Ø1.Str. ASZK1	
Fluid	natural gas		Fluid	natural gas
Base temperature	60	°F	Velocity of sound	ISO 20765-1
Base pressure	14.73	PSIA	Water cont.mode	sat. @Ps,Ts
Chromat. polling	no		Saturation pres.	150 PSIA
Gas composition	detailed		Saturation temp.	50 °F
Comp.downl.timeout	600	sec	GPM mode	GPA 2172-09
Line density mode	PTZ		Compr.fact.mode	AGA8/92DC
Base density mode	GPA 2172-09		Combust.ref.temp.	60 °F
Rel. density mode	GPA 2172-09		Dynamic visc.mode	GOST 30319.1-96
Inf.cal.val. mode	GPA 2172-09		Isentr. exp. mode	GOST 30319.1-96
Sup.cal.val. mode	GPA 2172-09		J-T coefficient	ISO TR 9464
Velocity of sound	ISO 20765-1		Eventing gas comp.	yes
Water cont.mode	sat. @Ps,Ts			sup.cal.value
Save Change		Î D	Save Change	

Figure 9-67 Natural gas data page (imperial example)

- Base temperature; The base temperature selected from list In metric units:
 - 15 °C;
 15.556 °C;
 20 °C;
 0 °C;
 In imperial units:
 59 °F;

- o 60 °F;
- Base pressure; In metric units: Not editable, fixed to 1.01325 bar In imperial units:
 - 0 14.4 PSIA;
 - o 14.5 PSIA;
 - o 14.65 PSIA;
 - o 14.696 PSIA;
 - o 14.7 PSIA;
 - o 14.73 PSIA;
 - o 15.025 PSIA;
- Chromatograph polling;
 - o no (no chromatograph polling is performed);
 - yes (chromatograph is polled for gas composition).
 NOTE: One of the serial port shall be connected to the gas chromatograph and the port function shall be set according to the type of the gas chromatograph to be polled.
 See 9.2.4.1.
- Gas composition;

It shall be defined if the properties of the natural gas (density, compression factor, etc.) will be calculated from the detailed gas composition or from the limited set of gas composition. The options are:

o detailed (gas composition);

21 components are assumed as defined in the AGA8-92 standard

o limited (gas composition);

3 components (N2, CO2, H2) are assumed as defined in the GERG 91 standard and relative/base density and inferior/superior calorific value to be entered.

If detailed composition is selected new menu page appears allowing select data pages for entering detailed gas composition.

Figure 9-68 Natural gas detailed gas composition menu page

01.Str. NGAS-ORIFICE Natural gas detailed gas composition Components selection Selected from Modb. Daniel

Selecting the menu items one by one data pages appear as follows.

Figure 9-69 Natural gas composition selection data page

The data fields on the data page are as follows:

- Components selection; Reserved for future use
 - keserved for future use
 - o identical;
- Selected from;

The detailed gas composition used in the calculation can be selected from:

o Keypad value;

The fixed values of the concentrations entered by the operator are used.

o Modb. Daniel;

The gas composition is downloaded into the UNIFLOW-200 on Modbus link (serial or Ethernet) from supervisory system in Daniel/Enron/Omni format. The register formats and map see in the section 10 Communications.

o Modb. STD1;

The gas composition is downloaded into the UNIFLOW-200 on Modbus link (serial or Ethernet) from supervisory system. The register formats and map, is shown in the section 10 Communications.

o Modb. STD2;

The gas composition is downloaded into the UNIFLOW-200 on Modbus link (serial or Ethernet) from supervisory system. The register formats and map, is shown in the section 10 Communications.

01.Str. NGAS-ORIFICE				01.Str. NGAS-ORIFIC	E
Natural gas detailed gas composition			position	Natural gas detailed gas composition	
keypad (r	nole%)	Total:1	00.0001	keypad (mole%)	Total: 100.0001
N2	0.7632	npentane	0.0098	ammonia	0 air 0
C02	0.0489	nhexane	0.0196	benzene	0
H2S	0	nheptane	0	dimet-prop-22	0
H20	0.1996	noctane	0	met-pent-2	0
helium	0	nnonane	0	met-pent-3	0
methane	95.8377	ndecane	0	dimet-but-22	0
ethane	0.7925	oxygen	0	dimet-but-23	0
propane	0.2642	CO	0	ethylene	0
ibutane	0.0489	H2	1.9569	propylene	0
nbutane	0.0489	argon	0	meth-alcohol	0
ipentane	0.0098	Other com	ponents	sulf-dioxid	0
	Change			Change	

Figure 9-70 Natural gas keypad composition data page

Keypad concentration of the 21 components can be entered on this page.

The name of the components abbreviated as follows:

- N2 nitrogen
- CO2 carbon-dioxide
- H2S hydrogen-sulfide
- H2O water
- He helium
- C1 methane
- C2 ethane
- C3 propane
- nC4 n-butane
- iC4 i-butane
- nC5 n-pentane
- iC5 i-pentane
- nC6 n-hexane
- nC7 n-heptane
- nC8 n-octane
- nC9 n-nonane
- nC10 n-decane
- O2 oxygen
- CO carbon-monoxide
- H2 hydrogen
- Ar argon

Beside the 21 components from AGA8 additional components from AGA5 and GPA 2172 can be entered as follows

ammonia	Ammonia
benzene	Benzene
dimet-propan-22	22-Dimethyl Propan
met-pent-2	2-Methyl Pentane
met-pent-3	3-Methyl Pentane
dimet-but-22	22-Dimethyl Butane
dimet-but-23	23-Dimethyl Butane

ethylene	Ethylen
propylen	Propylene
meth-alcohol	Methyl Alcohol
sulf-dioxid	Sulfur Dioxide
air	Air

The sum of the entered mole percentage must be in the 95 % - 105 % range. If the sum is outside this range, then the composition is rejected.

If the sum is inside the 95 % - 105 % range then UNIFLOW-200 performs normalization on the concentration and the normalized concentration is stored as keypad values.

The sum of the mole concentrations is checked on the downloaded composition also and the normalization is done if necessary.

01.Str. NGAS-ORIFICE			
Compon	ents slave	e modbus regist	ers
N2	7001	nhexane	7013
C02	7002	nheptane	7014
H2S	7003	noctane	7015
H20	7004	nnonane	7016
helium	7005	ndecane	7017
methane	7006	oxygen	7018
ethane	7007	CO	7019
propane	7008	H2	7020
nbutane	7009	rel.dens.	7021
ibutane	7010	Inf. cal. value	7022
npentane	7011	sup.cal.value	7023
ipentane	7012	argon	7024
)		

Figure 9-71 Natural gas Modbus registers data page

The Modbus registers for the 21 components and for the relative density, inferior calorific value and superior calorific value are displayed here.

The page is read only.

If limited composition is selected data page appears allowing enter the concentration of the nitrogen, carbondioxide and hydrogen.

01.Str. NGAS-ORIFIC Natural gas limited N2 mode Modbus address Keypad CO2 mode	gas composit Modb. Daniel 7001 0.897	
CO2 mode Modbus address Keypad H2 mode Modbus address	Modb. Daniel 7002 1.236 Modb. Daniel 7020	mole%
Keypad Change		molex

Figure 9-72 Natural gas limited gas composition data page

The data fields on the data page are as follows:

• N2 mode;

Select the source of the nitrogen concentration from the list:

o Keypad value;

The fixed value of the concentration entered by the operator is used.

Selecting "keypad" data entry field appears to enter the keypad value.

- N2mol%
- o measured;

Signal representing the concentration is measured on input channel (analog or Modbus or Hart). One channel in I/O signal setup section should be configured as "Special" signal type with mole % unit.

o Modb. Daniel;

Concentration is received as data on Modbus link in Daniel/Enron/Omni format.

Selecting "Modb. Daniel" data entry fields appear to enter the Modbus register

- N2 mole% modbus register; (register address where the concentration is downloaded)

o Modb. STD1;

Concentration is received as data on Modbus link in Modb. STD1 format.

Selecting "Modb. STD1" data entry fields appear to enter the Modbus register

- N2 mole% modbus register; (register address where the concentration is downloaded)
- o Modb. STD2;

Concentration is received as data on Modbus link in Modb. STD2 format.

Selecting "Modb. STD2" data entry fields appear to enter the Modbus register

- N2 mole% modbus register; (register address where the concentration is downloaded)
- CO2 mode;
- H2 mode;

Data fields for CO2 mode and H2 mode identical with those for N2 mode.

Comp. downl. timeout (Gas composition download timeout);

If the gas composition selection set to Modb. Daniel, Modb. STD1 or Modb.STD2 and no new gas composition is received within the timeout specified here then alarm is raised and the keypad gas composition will be used in the calculation.

• Compression factor mode;

The mode for the compression factor determination is selected here from the list as follows:

o AGA8-92DC

Compression factor is calculated according to the AGA8-92DC equation from the detailed gas composition.

If AGA8-92DC is selected entry field opens to enter the combustion reference temperature. It is selected from the list 0, 15, 20, 25 °C.

o AGA8-92Gr1

Compression factor is calculated according to the AGA8-92 Gross method 1 from the superior calorific value, relative density and CO2 content.

The H2 and CO are taken into the calculation as described in SGERG TM5 1991.

If AGA8-92Gr1 is selected entry field opens to enter the combustion reference temperature. It is selected from the list 0, 15, 20, 25 °C.

o AGA8-92Gr2

Compression factor is calculated according to the AGA8-92 Gross method 2 from the relative density, CO2 and N2 content.

The H2 and CO are taken into the calculation as described in SGERG TM5 1991.

o SGERG88

Compression factor is calculated according to the SGERG 88 according to ISO 12213-3 from the base density, superior calorific value, CO2 and H2 content.

o GERG91mod (available in metric units only)

Compression factor is calculated according to the GOST 30319.2-96 from the base density, CO2 and N2 content.

In case of GERG91mod selection the base temperature is automatically set to 20 °C

NX19mod (available in metric units only)
 Compression factor is calculated according to the GOST 30319.2-96 from the base density, CO2 and N2 content.

In case of NX19mod selection the base temperature is automatically set to 20 °C

- VNIC SMV (available in metric units only)
 Compression factor is calculated according to the GOST 30319-2-96 from the detailed gas composition.
- o AGA NX19

Compression factor is calculated according to the AGA NX19 from the relative density, CO2 and N2 content.

o Z keypad The operator entered keypad value is used in the flow calculation.

If z keypad is selected then two entry fields open to enter the base compression factor and line compression factor keypad values.

o AGA8/85

Compression factor is calculated according to the AGA8 1985 edition from the detailed gas composition.

o GOST 30319.2-2015

Compression factor is calculated according to the GOST 30319-2.2015 standard from the base density, CO2 and N2 content.

o GOST 30319.3-2015

Compression factor is calculated according to the GOST 30319-3.2015 standard from the detailed gas composition.

• Line density mode;

The mode for the line density determination is selected here from the list as follows:

o PTZ

Line density calculated from the base density with pressure, temperature and compression factor correction.

o AGA7

Line density calculated from the base density with pressure, temperature and compression factor correction as defined in AGA7.

o AGA8/92DC

Line density is taken from the AGA8/92DC calculation.

o keypad

The operator entered keypad value is used in the flow calculation.

If keypad is selected entry field opens to enter the keypad value.

- GOST 30319.2-2015
 Line density is calculated according to the GOST 30319-2.2015 standard.
- o GOST 30319.3-2015

Line density is calculated according to the GOST 30319-3.2015 standard.

o measured

Signal representing the line density is measured on input channel. One channel in I/O signal setup section should be configured as "Line density" signal type.

o Modb. Daniel

Line density is received as data on Modbus link in Daniel/Enron/Omni format. If Modb. Daniel is selected entry field opens to enter the keypad value. This keypad value will be used in calculation if no data received within the timeout time.

o Modb. STD2

Line density is received as data on Modbus link in Modb. STD2 data format.

If Modb. STD2 is selected entry field opens to enter the keypad value.

This keypad value will be used in calculation if no data received within the timeout time.

• Base density mode;

The mode for the base density determination is selected here from the list as follows:

- measured
 Signal representing the base density is measured on input channel. One channel in I/O signal setup section should be configured as "Base density" signal type.
- Calc. from rel. (calculated from relative density)
 Base density is calculated from Relative density

```
o Modb. Daniel
```

Base density is received as data on Modbus link in Daniel/Enron/Omni format.

If Modb. Daniel is selected entry field opens to enter the keypad value.

This keypad value will be used in calculation if no data received within the timeout time.

o keypad

The operator entered keypad value is used in the flow calculation.

If keypad is selected entry field opens to enter the keypad value.

o ISO6976:1995

Base density is calculated from the detailed gas composition according to ISO 6976:1995 standard.

o ISO6976:2016

Base density is calculated from the detailed gas composition according to ISO 6976:2016 standard.

o Modb. STD2

Base density is received as data on Modbus link in Modb. STD2 format. If Modb. STD2 is selected entry field opens to enter the keypad value. This keypad value will be used in calculation if no data received within the timeout time.

- GOST 30319.1-96 (available in metric units only)
 Base density is calculated from the detailed gas composition according to GOST 30319.1-96 standard.
 - In case of GOST 30319.1-96 selection the base temperature is automatically set to 20 °C.
- o GPA 2172-09 (available in imperial units only)

Base density is calculated from the detailed gas composition according to GPA 2172-09.

• Relative density mode;

The mode for the relative density determination is selected here from the list as follows:

o ISO6976:1995

Relative density is calculated from the detailed gas composition according to ISO6976:1995 standard.

o ISO6976:2016

Relative density is calculated from the detailed gas composition according to ISO6976:2016 standard.

o AGA5

Relative density is calculated from the detailed gas composition according to AGA5.

o GPA 2172-09 (available in imperial units only)

Relative density is calculated from the detailed gas composition according to GPA 2172-09.

o measured

Signal representing the relative density is measured on input channel. One channel in I/O signal setup section should be configured as "Relative density" signal type.

- Calc. from base (Calculated from Base density) Relative density is calculated from Base density
- o Modb. Daniel

Relative density is received as data on Modbus link in Daniel/Enron/Omni format.

If Modb. Daniel is selected entry field opens to enter the keypad value.

This keypad value will be used in calculation if no data received within the timeout time.

o Modb. STD1

Relative density is received as data on Modbus link in Modb. STD1 format.

If Modb. STD1 is selected entry field opens to enter the keypad value.

This keypad value will be used in calculation if no data received within the timeout time.

o Modb. STD2

Relative density is received as data on Modbus link in Modb. STD2 format. If Modb. STD2 is selected entry field opens to enter the keypad value.

i Modb. STD2 is selected entry lield opens to enter the keypad value.

This keypad value will be used in calculation if no data received within the timeout time.

o keypad

The operator entered keypad value is used in the flow calculation.

If keypad is selected entry field opens to enter the keypad value.

• Inferior calorific value mode;

The mode for the inferior calorific value determination is selected here from the list as follows:

- ISO6976:1995
 Inferior calorific value is calculated from the detailed gas composition according to ISO6976:1995 standard.
- ISO6976:2016
 Inferior calorific value is calculated from the detailed gas composition according to ISO6976:2016 standard.
- GOST 30319.1-96 (available in metric units only) Inferior calorific value is calculated from the detailed gas composition according to GOST 30319.1-96 standard.
- o AGA5

Inferior calorific value is calculated from the detailed gas composition according to AGA5.

- GPA 2172-09 (available in imperial units only) Inferior calorific value is calculated from the detailed gas composition according to GPA 2172-09.
- o measured

Signal representing the inferior calorific value is measured on input channel. One channel in I/O signal setup section should be configured as "Inferior calorific value" signal type.

o Modb. Daniel

Inferior calorific value is received as data on Modbus link in Daniel/Enron/Omni format. If Modb. Daniel is selected entry field opens to enter the keypad value.

This keypad value will be used in calculation if no data received within the timeout time.

o Modb. STD1

Inferior calorific value is received as data on Modbus link in Modb. STD1 format. If Modb. STD1 is selected entry field opens to enter the keypad value.

This keypad value will be used in calculation if no data received within the timeout time. • Modb. STD2

Inferior calorific value is received as data on Modbus link in Modb. STD2 format.

If Modb. STD2 is selected entry field opens to enter the keypad value.

This keypad value will be used in calculation if no data received within the timeout time.

o keypad

The operator entered keypad value is used in the flow calculation

• Superior calorific value mode;

The mode for the superior calorific value determination is selected here from the list as follows:

o ISO6976:1995

Superior calorific value is calculated from the detailed gas composition according to ISO6976:1995 standard.

- ISO6976:2016
 Superior calorific value is calculated from the detailed gas composition according to ISO6976:2016 standard.
- GOST 30319.1-96 (available in metric units only) Superior calorific value is calculated from the detailed gas composition according to GOST 30319-1.
- o AGA5

Inferior calorific value is calculated from the detailed gas composition according to AGA5.

o GPA 2172-09 (available in imperial units only)

Superior calorific value is calculated from the detailed gas composition according to GPA 2172-09.

o measured

Signal representing the superior calorific value is measured on input channel.

One channel in I/O signal setup section should be configured as "Superior calorific value" signal type.

o Modb. Daniel

Superior calorific value is received as data on Modbus link in Daniel/Enron/Omni format. If Modb. Daniel is selected entry field opens to enter the keypad value.

This keypad value will be used in calculation if no data received within the timeout time.

 Modb. STD2
 Superior calorific value is received as data on Modbus link in Modb. STD2 format. If Modb. STD2 is selected entry field opens to enter the keypad value. This keypad value will be used in calculation if no data received within the timeout time.
 keypad

The operator entered keypad value is used in the flow calculation

• Dynamic viscosity mode;

The mode for the dynamic viscosity determination is selected here from the list as follows:

- GOST 30319.1-96
 Dynamic viscosity calculated from the base density, N2 and CO2 content, pressure and temperature according to GOST 30319.1-96
- GOST 30319.2-2015
 Dynamic viscosity calculated from the base density, N2 and CO2 content, pressure and temperature according to GOST 30319.2-2015
- GOST 30319.3-2015
 Dynamic viscosity calculated from the detailed gas composition, pressure and temperature according to GOST 30319.3-2015
- keypad
 The operator entered keypad value is used in the flow calculation.
- Isentropic exponent mode;

The mode for the isentropic exponent determination is selected here from the list as follows:

- GOST 30319.1-96
 Isentropic exponent is calculated from the base density, CO2 content, pressure and temperature according to GOST 30319.1-96
- o ISO 20765-1
- Isentropic exponent is calculated according to ISO 20765-1 from the detailed gas composition.
- GOST 30319.2-2015
 Isentropic exponent is calculated from the base density, CO2 content, pressure and temperature according to GOST 30319.2-2015
- GOST 30319.3-2015
 Isentropic exponent is calculated from the detailed gas composition, pressure and temperature according to GOST 30319.3-2015
- keypad
 The operator entered keypad value is used in the flow calculation

• Joule-Thomson coefficient mode;

The mode for the Joule-Thomson coefficient determination is selected here from the list as follows:

- ISO TR 9464 Joule-Thomson coefficient is calculated from the pressure and temperature according to ISO TR 9464
- ISO 20765-1 Joule-Thomson coefficient is calculated according to ISO 20765-1 from the detailed gas composition.
- keypad
 The operator entered keypad value is used in the flow calculation
- Velocity of sound mode;

The mode for the velocity of sound determination is selected here from the list as follows:

- ISO 20765-1
 Velocity of sound is calculated from the detailed gas composition according to ISO 20765-1
- GOST 30319.1-96
 Velocity of sound is calculated according to GOST 30319.1-96.
- GOST 30319.2-2015
 Velocity of sound is calculated according to GOST 30319.2-2015.
- GOST 30319.3-2015
 Velocity of sound is calculated according to GOST 30319.3-2015.
- o keypad The operator entered keypad value is used.

• Water content mode (available in imperial units only);

If any of the Relative density mode, Base density mode, Inferior calorific value mode or Superior calorific value mode is selected as GPA 2172-2009, then the water content mode shall be selected from the list as follows:

o dry

Water content is assumed to be 0.

o saturated @ Ps,Ts

It is assumed that the natural gas is saturated with water at saturation pressure Ps and saturation temperature Ts. The concentration of the water is calculated according to GPA 2172-2009. Entry fields for saturation pressure and temperature are opened here.

- Saturation pressure;
- Saturation temperature;

o saturated @ Pn, Tn

It is assumed that the natural gas is saturated with water at base pressure Pn and base temperature Tn. The concentration of the water is calculated according to GPA 2172-2009.

o measured

Signal representing the water content value in lbmmscf is measured on input channel. One channel in I/O signal setup section should be configured as "Special" signal type. The unit of measurement for that special signal shall be lbmmscf.

o keypad

The operator entered keypad value is used in the flow calculation. Entry field opens here for keypad value of the water content.

- keypad value
- o Modbus signal

Signal representing the water content value in lbmmscf is measured on Modbus input channel. One Modbus channel in I/O signal setup section should be configured as "Special" signal type. The unit of measurement for that special signal shall be lbmmscf.

• GPM mode (available in imperial units only);

If any of the Relative density mode, Base density mode, Inferior calorific value mode or Superior calorific value mode is selected as GPA 2172-2009, then the GMP mode shall be selected from the list as follows:

o GPA 2172-2009

The GPM (liquid equivalent) of the natural gas is calculated according to GPA 2172-2009.

• Eventing gas composition limits;

It is operator selectable if the gas composition limits given in Tables 9-2 and Table 9-3 will generate limit alarms and entries in the event log or not.

- o yes
- o no

Energy calculation from;

It is operator selectable if the energy flow rate of the natural gas stream shall be calculated from inferior or superior calorific value.

o superior calorific value; o inferior calorific value;

NOTE

The available modes of the natural gas properties listed above depends on that if the detailed or limited set of gas composition is given. There is also an interlock in the base and relative density selections. The Table 9.1. bellow summarizes the possible modes of the properties.

Table 9.2. and Table 9.3. give the nominal and expanded ranges of gas mixture characteristics for compression factor calculation from detailed and limited set of gas composition.

If the gas mixture characteristics are outside the nominal range but inside the expanded range UNIFLOW-200 generates alarm (if eventing is enabled) but continue the calculation.

Outside the expanded range UNIFLOW-200 generates alarm in any case and tries to continue the compression factor calculation. If due to extreme gas composition the compression factor calculation fails alarm is generated and the last valid calculated compression factor will be used in the flow calculation.

In case of limited gas composition the properties entered must belong to real natural gas. Entering arbitrary calorific value, relative density, CO2 and N2 content may lead to calculation failure (convergence error) in the AGA8-92Gr1 and Gr2 calculation.

		If the gas compo	osition is given as	
	detailed gas composition		limited set of gas composition	
	AND Base density mode NOT from Relative density then	AND Base density mode IS from Relative density then	AND Base density mode NOT from Relative density then	AND Base density mode IS from Relative density then
Relative density modes	 measured Calc. from base Modb. Daniel Modb. STD1 Modb. STD2 keypad ISO6976:1995 ISO6976:2016 AGA5 GPA 2172-09 (imperial only) 	- measured - Modb. Daniel - Modb. STD1 - Modb. STD2 - keypad - ISO6976:1995 - ISO6976:2016 - AGA5 - GPA 2172-09 (imperial only)	- measured - Calc. from base - Modb. Daniel - Modb. STD1 - Modb. STD2 - keypad	- measured - Modb. Daniel - Modb. STD1 - Modb. STD2 - keypad
	AND Relative density mode NOT from Base density then	AND Relative density mode IS from Base density	AND Relative density mode NOT from Base density then	AND Relative density mode IS from Base density
Base density modes	- measured - Calc. from rel. - Modb. Daniel - keypad - ISO6976:1995 - ISO6976:2016 - Modb. STD2 - GOST 30319.1-96 (metric only) - GPA 2172-09 (imperial only)	- measured - Modb. Daniel - keypad - ISO6976:1995 - ISO6976:2016 - Modb. STD2 - GOST 30319.1-96 (metric only) - GPA 2172-09 (imperial only)	- measured - Calc. from rel. - Modb. Daniel - Modb. STD2 - keypad	- measured - Modb. Daniel - Modb. STD2 - keypad
Inferior calorific value modes	- measured - Modb. Daniel - Modb. STD1 - Modb. STD2 - keypad - ISO6976:1995 - ISO6976:2016 - GOST 30319.1-96 (metric only) - AGA5 - GPA 2172-09 (imperial only)		- measured - Modb. Daniel - Modb. STD1 - Modb STD2 - keypad	
Superior calorific value modes	- measured - Modb. Daniel - Modb. STD2 - keypad - ISO6976:1995 - ISO6976:2016 - GOST 30319.1-96 (metric only) - AGA5 - GPA 2172-09 (imperial only)		- measured - Modb. Daniel - Modb. STD2 - keypad	

Compression factor modes	- AGA 8/92DC - AGA 8/92Gr1 - AGA 8/92Gr2 - SGERG 88 - GERG91mod (metric only) - NX19mod (metric only) - VNIC SMV (metric only) - AGA NX19 - Z keypad - AGA 8/85 - GOST 30319.2-2015 - GOST 30319.3-2015	- AGA8/92Gr1 - AGA8/92Gr2 - SGERG 88 - GERG91mod (metric only) - NX19mod (metric only) - AGA NX19 - Z keypad - GOST 30319.2-2015
Line density modes	- PTZ - AGA7 - AGA8/92DC (Note 1) - keypad - GOST 30319.2-2015 (metric only) - GOST 30319.3-2015 (metric only, Note 1) - measured - Modb. Daniel - Modb. STD2	- PTZ - AGA7 - keypad - GOST 30319.2-2015 (metric only) - measured - Modb. Daniel - Modb. STD2
Dynamic viscosity mode	- GOST 30319.1-96 (metric only) - GOST 30319.2-2015 (metric only) - GOST 30319.3-2015 (metric only, Note 1) - keypad	- GOST 30319.1-96 (metric only) - GOST 30319.2-2015 (metric only) - keypad
Izentropic exponent mode	- GOST 30319.1-96 (metric only) - ISO 20765-1 - GOST 30319.2-2015 (metric only) - GOST 30319.3-2015 (metric only, Note 1) - keypad	- GOST 30319.1-96 (metric only) - GOST 30319.2-2015 (metric only) - keypad
Joule-Thomson coefficient mode	- ISO 20765-1 - ISO TR 9464 - keypad	- ISO TR 9464 - keypad
Velocity of sound mode	 - ISO 20765-1 - GOST 30319.1-96 (metric only) - GOST 30319.2-2015 (metric only) - GOST 30319.3-2015 (metric only, Note 1) - keypad 	- GOST 30319.1-96 (metric only) - GOST 30319.2-2015 (metric only) - keypad

Note 1 Available only if "Compression factor mode" is AGA8/92DC or GOST 30319.3-2015.

The data page for coke oven gas composition is shown on the figure below.

Table 9-3 Natural gas properties modes

AGA8-92DC method	Normal range of parameters	Expanded range of parameters
Pressure absolute	0 120 bar	0 1400 bar
Temperature	-10 +65 oC	-130 +200 oC
Components	mole %	mole %
Methane	45 100	0 100
Nitrogen	0 50	0 100
Carbon-dioxide	030	0 100
Ethane	0 10	0 100
Propane	04	0 12
Water	0 0.05	01
Hydrogen-sulfide	0 0.02	0 100
Hydrogen	0 10	0 100
Carbon-monoxide	03	03
Oxygen	0	0 21
Butanes	01	06
Pentanes	0 0.3	04
Hexanes plus	00.2	01
Helium	00.2	03
Argon	0	01

VNIC SMV method	Normal range of parameters	
Pressure absolute	0 120 bar	
Temperature	-3 +67 oC	
Components	mole %	
Methane	65 100	
Nitrogen	0 15	
Carbon-dioxide	0 15	
Ethane	0 15	
Propane	0 3.5	
Hydrogen-sulfide	030	
Butanes	0 1.5	
Others	0 1.0	

 Table 9-4 Ranges of gas mixture characteristics for compression factor calculation from detailed gas composition

AGA8/92Gr1 and Gr2 method and SGERG 88 method	Normal range of parameters	Expanded range of parameters
Pressure absolute	0 120 bar	0 120 bar
Temperature	-10 +65 oC	-23 +77 oC
Superior calorific value	30 45 MJ/m3	20 48 MJ/m3
Relative density	0.55 0.80	0.55 0.90
Nitrogen	0 20	0 50
Carbon-dioxide	0 20	0 30
Hydrogen	0 10	0 10

GERG91mod method	Normal range of parameters	Expanded range of parameters
Pressure absolute	0 120 bar	120 300 bar
Temperature	-23 +57 oC	-13 +67 oC
Base density	0.668 0.70 kg/m ³	0.668 1.0 kg/m ³

NX19mod method	Normal range of parameters	Expanded range of parameters
Pressure absolute	0 30 bar	120 300 bar
Temperature	-23 +17 °C	-13 +17 ºC
Base density	0.668 0.70 kg/m ³	0.668 1.0 kg/m ³

Table 9-5 Ranges of gas mixture characteristics for compression factor calculation from limited set of
gas composition

9.2.2.1.1.1.2 Coke oven gas

Route in the menu tree:

Parameters	Streams	Physical stream	Stream n.				
		Fluid	HC gas mixture	Coke oven gas			

The coke oven gas data pages are identical with natural gas data pages except of the gas composition. The name of the coke oven gas components and their default concentration are listed in the table below.

Components	Abbreviation	Component in AGA8 calculation	mole % (default)
Nitrogen	N2	Nitrogen	2
Carbon-dioxide	CO2	Carbon-dioxide	3
Hydrogen-sulphide	H2S	Hydrogen-sulphide	0
Water	H2O	Water	1
Methane	C1	Methane	23
Ethane	C2H6	Ethane	2
Ethylene	C2H4	Ethane	0
Oxygen	02	Oxygen	1
Carbon-monoxide	CO	Carbon-monoxide	9
Hydrogen	H2	Hydrogen	58
Ammonia	NH3	Methane	0
Benzene	C6H6	n-Pentane	1

Table 9-6 Coke oven gas composition

The data page for coke oven gas composition is shown on the figure below.

Function of the F keys on the Coke oven gas data page

- select the next field for editing
- f select the previous field for editing
- return to previous menu level

Change modify the selected data field

Ø1.Str.ASZ	2K1		
Coke oven g	gas detail	ed gas compo:	sition
	keypad	(mole%)	
N2	2	benzene	1
C02	3	Total:	100
H2S	0		
H20	1		
methane	23		
ethane	2		
ethylene	0		
oxygen	1		
CO	9		
H2	58		
ammonia	0		

Figure 9-73 Coke oven gas composition data page

9.2.2.1.1.1.3	Blast	furnace gas
---------------	-------	-------------

Route in the r	nenu tree:			
Parameters	Streams	Physical stream	Stream n.	
		Fluid	HC gas mixture	Blast furn. gas

The blast furnace gas data pages are identical with natural gas data pages except the gas composition. The name of the blast furnace gas components and their default concentration are listed in the table below.

Components	Abbreviation	Component in AGA8 calculation	mole % (default)
Nitrogen	N2	Nitrogen	57
Carbon-dioxide	CO2	Carbon-dioxide	18
Water	H2O	Water	1
Carbon-monoxide	CO	Carbon-monoxide	21
Hydrogen	H2	Hydrogen	3

Table 9-7 Blast furnace gas composition

The data page for blast furnace gas composition is shown on the figure below.

Function of the F keys on the Blast furnace gas data page

- select the next field for editing
- **企** select the previous field for editing
- return to previous menu level

Change modify the selected data field

	GAS-ORIFICE
Blast fui	n.gas detailed gas composition
	keypad (mole%)
N2	57
C02	18
H20	1
CO	21
H2	3
Total:	100
\leftarrow	Change Change

Figure 9-74 Blast furnace gas composition data page

9.2.2.1.1.2 Pure gases

Predefined pure gases are as follows

- o Air;
- o Nitrogen;
- o Oxygen;
- o Argon;
- o Carbon-dioxide;
- o Hydrogen;
- o Carbon-monoxide;
- o Ethylene;
- o Ammonia;
- o Propane;
- o General gas;

The compression factor, dynamic viscosity and isentropic exponent for these gases are calculated according to HE-64 (calculation procedure of Hungarian Office of Measures). The calculation methods described in HE-64 based on the text books, articles as listed in the bibliography of the HE-64.

The data page for pure gases, except "General gas" is shown on the figure below.

Function of the F keys on the Pure gases data page

- select the next field for editing
- **①** select the previous field for editing
- Change modify the selected data field

Save save the selected/entered data and returns to the parent menu.

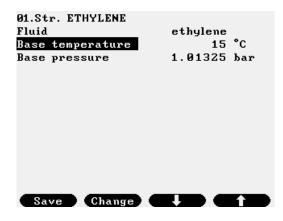


Figure 9-75 Predefined pure gas data page

If the measured gas is not listed in the predefined pure gas list then "General gas" shall be selected. In this case the different properties of the gas shall be entered as keypad values or as measured values as appropriate. In latter case the IO channel the measured properties is assigned to shall be defined in the Stream setup menu.

The data page for "General gas" is shown on the figure below.

Function of the F keys on the General gas data page

- ♣ select the next field for editing
- む select the previous field for editing
- Change modify the selected data field

Save save the selected/entered data and returns to the parent menu.

Ø1.Str. GGAS			01.Str.	GGAS		
Fluid	general gas		Fluid		general gas	
Base temperature	15	°C	Base de	nsity mode	keypad	
Base pressure	1.01325	bar	keypad	l value	0.68	kg∕m ³
Line density mode	PTZ		Rel. der	nsity mode	keypad	
Base density mode	keypad		keypad	l value	0.555	
keypad value	0.68	kg∕m ³	Inf.cal.	val. mode	keypad	
Rel. density mode	keypad		keypad	l value	34.02000	MJ∕m ³
keypad value	0.555		Sup.cal.	.val. mode	keypad	
Inf.cal.val. mode	keypad		keypad	l value	37.77999	MJ∕m³
keypad value	34.02000	MJ∕m³	Line co	mpr.factor	1	
Sup.cal.val. mode	keypad		Base co	mpr.factor	1	
keypad value	37.77999	MJ∕m³	Dynamic	viscosity	1.0000e-05	Pasec
Line compr.factor	1		Isentr.	exp.	1.3	
Save Change		1 D	Save	Change		τ D

Figure 9-76 General gas data page

9.2.2.1.1.3 Water steam Route in the menu tree: Parameters Parameters Streams Pluid Water steam

The water steam properties are calculated according to Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam (IAPWS-IF97).

The water steam data page is shown on the figure below.

Function of the F keys on the Water steam data page

select the next field for editing

企 select the previous field for editing

Change modify the selected data field

Save save the selected/entered data and returns to the parent menu.

01.Str. ASZK1 Fluid water steam Teasured pressure-temperature Overpres. above sat.pres. 1 Phase superheated + saturated Calc.corr.signal none	01.Str. ASZK1 Fluid water steam <u>Measured</u> pressure ? Phase saturated Calc.corr.signal saturation temp.
Save Change I T	Save Change

Figure 9-77 Water steam data page for superheated and saturated steam

The data fields on the data page are as follows:

• Fluid;

Not editable, fixed to water steam.

• Measured;

The measured parameters are selected from the list:

o pressure-temperature

it is assumed that water steam phase is superheated and both temperature and pressure input is required to calculate the properties of the steam. Numeric input

- overpressure above saturation pressure, in % is required in this case. In fact this parameter takes into consideration the uncertainty in pressure measurement.

The flow computer calculates the saturation pressure for the measured temperature. If the measured pressure is above the saturation pressure plus the overpressure parameter then

UNIFLOW-200 raises alarm. While the pressure is below this limit UNIFLOW-200 continues the calculation with the measured pressure.

o pressure

it is assumed that water steam phase is saturated. The temperature of the steam is calculated from the saturation line and the properties are calculated from the measured pressure and from the saturation temperature.

o temperature

it is assumed that water steam phase is saturated. The pressure of the steam is calculated from the saturation line and the properties are calculated from the measured temperature and from the saturation pressure.

9.2.2.1.1.4 Water

Route in the menu tree:						
Streams	Physical stream	Stream 1.				
	Fluid	Water				
		Streams Physical stream	Streams Physical stream Stream 1.			

The water properties are calculated according to Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam (IAPWS-IF97).

The water data page is shown on the figure below.

Function of the F keys on the Water data page Change modify the selected data field Save save the selected/entered data and returns to the parent menu.

07.Str. HOT WATER Fluid Base temperature Base pressure	water 15 °C 1 bar
Save Change	

Figure 9-78 Water data page

The data fields on the data page are as follows:

- Base temperature;
 - The base temperature selected from list
 - o 15 °C;
 - o 20 °C.
- Base pressure; Not editable, fixed to 1 bar

9.2.2.1.1.5 Liquids

9.2.2.1.1.5.1 Crude oil and products

Route in the menu tree:

Parameters	Streams	Physical stream	Stream 1.	
		· · ·		
		Fluid	Liquid	Crude oil & product

The crude oil and product data page is shown on the figure below.

Function of the F keys on the Crude oil and products data page

- ♣ select the next field for editing
- **企** select the previous field for editing
- ⇒ enter into submenu for gas composition editing
- Change modify the selected data field
- **OK** Confirm the selection

Save save the selected/entered data and returns to the parent menu.

04.Str. CR.OIL-LIQ.T	URBINE	04.Str. CR.OIL-LIQ.T	URBINE	
Fluid	crude oil	CPL mode Cł	apter 11.2.1	1(1984)
Base temperature	15 C	Density	meas.at hea	der
Base pressure	1 barG	Base density mode	calculated	
CTL mode	Table 53A,54A(1980)	Aerometer glass com	rr. no	
CPL mode Cl	hapter 11.2.1M(1984)	Rounding	no	
Density	meas.at header	Density at fl.meter	calculated	
Base density mode	calculated	Energy flow calc.	yes	
Aerometer glass co	rr. no	Cal.value mode	keypad	
Rounding	no	keypad value	40.36000	MJ∕kg
Density at fl.meter	calculated	CO2 emission factor	73.30000	kg∕GJ
Energy flow calc.	yes	Viscosity type	kinematic	
Cal.value mode	keypad	Viscosity mode	keypad	
keypad_value	40.36000 MJ/kg	keypad value	30	nn2/s
Save Change		Save Change		

Figure 9-79 Crude oil and product data page

The data fields on the data page are as follows:

• Fluid;

Select the type of the fluid from the list:

- o crude oil;
- o products;
- o lubricating oil;
- O NGL & LPG
- o UGC STO 5.9 (unstable gas condensate according to Gazprom STO 5.9)
- o SLH STO 5.9 (stable liquid hydrocarbon according to Gazprom STO 5.9)
- WFLH STO 5.9 (wide fraction of light hydrocarbons according to Gazprom STO 5.9)
- Base temperature;

See the available options in Table 9-8.

- Base pressure; See the available options in Table 9-8.
- CTL mode; See the available options in Table 9-8.
- CPL mode; See the available options in Table 9-8.

Liquid	CTL mode	Base temperature (metric)	Base pressure (metric)	CPL mode (metric)	Base temperature (imperial)	Base pressure (imperial)	CPL mode (imperial)
Crude oil	Table 53A, 54A (1980)	15 °C	0 barG	Chapter 11.2.1M (1984)	na	na	na
Refined products	Table 53B, 54B (1980) Table 53C, 54C (1980)	15 °C	0 barG	Chapter 11.2.1M (1984)	na	na	na
NGL & LPG	Table 53E, 54E (2007) Table 59E, 60E (2007)	15 °C 20 °C	0 barG	Chapter 11.2.2M (1984)	na	na	na
Crude oil	Table 23A, 24A (1980)	na	na	na	60 °F	0 PSIG	Chapter 11.2.1 (1984)
Refined products	Table 23B, 24B (1980) Table 23C, 24C (1980)	na	na	na	60 °F	0 PSIG	Chapter 11.2.1 (1984)
NGL & LPG	Table 23E, 24E (2007)	na	na	na	60 °F	0 PSIG	Chapter 11.2.2 (1986)
Crude oil, refined products, lubricating oil	Chapter 11.1 (2008)	15 °C 20 °C	0 barG	Chapter 11.1 (2008)	60 °F	0 PSIG	Chapter 11.1 (2008)
Unstable gas condensate	STO Gazporm 5.9 B.1 (2007)	20 °C	1.0132 barA	STO Gazporm 5.9 B.1 (2007)	na	na	na
Stable hydrocarbon liquid	STO Gazprom 5.9 B.2 (2007)	15 °C	0 barG	STO Gazprom 5.9 B.2 (2007)	na	na	na
Wide fraction of light hydrocarbons	STO Gazporm 5.9 B.3 (2007)	15 °C 20 °C	0 barG	STO Gazporm 5.9 B.3 (2007)	na	na	na

Table 9-8 CTL and CPL modes, base temperature and base pressure options for liquid hydrocarbons

Density mode;

The density mode selected from the list:

- - the measured density at flow meter will be converted to base density with the meter pressure and meter temperature;
- not measured;
 If density is not measured then keypad value for density at base conditions shall be entered.
 The Base density mode set to keypad automatically.
- o meas. at header (measured at header pipe);
 If density is measured at header pipe then:
 - the measured header density will be converted to base density with the header pressure and header temperature;

- the base density will be converted to density at meter with the meter pressure and meter temperature;
- Base density mode;

The density mode selected from the list:

o calculated;

The base density is calculated from the measured (at header or at meter) density. In case of line density transmitter failure the keypad value of the line density is used in the base density calculations.

o Calculated/external;

The base density is calculated from the measured (at header or at meter) density. In case of line density transmitter failure the base density is assumed to be constant. The value of the base density is selected from the Product definition table, defined in the Stream setup menu. The product definition table consists of maximum 16 products with the corresponding keypad base densities. The product the base density of which to be used in the calculation is defined via communication interface.

This option is used when Batching is enabled and the Batch type is "Pipeline product interface".

Set to calculated if the density mode is measured at flow meter or at the header pipe.

Set to external if the density mode is not measured.

If set to external, source of the base density (measured, Modbus, keypad) is defined in the stream setup menu.

• Density at flow meter mode;

Not editable.

Set to calculated if the density mode is measured at header pipe or not measured.

Set to measured if the density mode is measured at flow meter.

- Energy calculation mode;
 - o no;
 - o yes;

If energy calculation is required then new entry fields appear allowing enter the calorific value mode and the keypad calorific value if not measured. Enabling energy calculation enables the CO2 emission calculation as well. The CO2 emission calculation requires the CO2 emission factor to be entered.

If the fluid type is Products then the subtype of the fuel for CO2 emission shall be selected. If the fluid type is Crude oil then no subtype selection is required.

The default calorific value and CO2 emission factor for the different fuels are shown in the Table 9.4. below. Both the calorific value and CO2 emission factor can be modified to suit local requirements.

- Fuel subtype (if the fluid = Products only);
 - o heating oil;
 - o fuel oil;
 - o low sulfur heating oil;
 - o heavy heating oil;
 - o gasoline;
 - o diesel oil;
- Calorific value mode;
 - o keypad;

- keypad calorific value;
- measured;
 Signal representing the calorific value is measured on input channel. One channel in I/O signal setup section should be configured as "Calorific value" signal type.
- CO2 emission factor;

Keypad value for CO2 emission factor;

- Viscosity type;
 - o kinematic;
 - o dynamic;

Selection of the desired viscosity type

- Viscosity mode;
 - o keypad;

The operator entered keypad value is used in the flow calculation.

o Modbus signal;

Signal representing the kinematic viscosity value is measured on Modbus input channel. One Modbus channel in I/O signal setup section should be configured as "Kinematic viscosity" or "Dynamic viscosity" signal type.

measured; (available for kinematic viscosity only)
 Signal representing the kinematic viscosity value is measured on input channel. One analog

channel in I/O signal setup section should be configured as "Kinematic viscosity" signal type.

• Keypad value;

Keypad value of the viscosity, dynamic or kinematic;

Fuel type	Calorific	CO2 emission
	value, MJ/kg	factor, tCO2/TJ
Crude oil	40.36	73.3
Heating oil	42.0	74.07
Fuel oil	41.0	77.37
Low sulfur heating oil	40.0	77.37
Heavy heating oil	39.5	77.37
Gasoline	44.0	69.3
Diesel oil	42.0	74.07

Table 9-9 Default values of the calorific value and CO2 emission factors

Temperature and pressure correction of the measured density to the base density and the base density to the density at meter is done according to the method selected in CTL mode and CPL mode menu. See Table 9-8.

NOTE

If the fluid type is Product the subtype of the product (gasoline, intermediate, jet fuel, fuel oil) determined automatically based on the density at base conditions. The limits of the base densities for the product subtypes applied as defined in the standards selected in CTL mode selection menu.

NOTE

The product subtype classified on the base density different from the fuel subtype described in the CO2 emission section.

9.2.2.1.1.5.2 Ethanol

Route in the menu tree:				
Parameters	Streams	Physical stream	Stream 1.	
		Fluid	Liquid	Ethanol

The ethanol data page is shown on the figure below.

Function of the F keys on the Ethanol data page

- select the next field for editing
- ŵ select the previous field for editing
- ⇒ enter into submenu for gas composition editing

Change modify the selected data field

OK Confirm the selection

Save save the selected/entered data and returns to the parent menu.

05.Str. ETHANOL-COR	IOLIS	
Fluid	ethanol	
Base temperature	20	°C
Base pressure	1	bar
Line density mode	measured	
Volume pres.corr.	yes	
Compression factor	1.0000e-04	1/bar
Dynamic viscosity	0.001	Pasec
Save Change		
Save Change		

Figure 9-80 Ethanol data page

The data fields on the data page are as follows:

- Fluid;
 - Not editable, fixed to Ethanol
- Base temperature;

The base temperature selected from list

- o 20 °C;
- o 15 °C;
- o 0 °C;
- Base pressure; Not editable, fixed to 1 bar.
- Density mode; The density mode selected from the list:
 - o measured;

Signal representing the line density value is measured on input channel. One channel in I/O signal setup section should be configured as "Line density" signal type. In this case no concentration entry field appears.

o calculated;

If density mode is calculated then the concentration of the ethanol (the alcohol strength) shall be provided. The line density will be calculated based on the concentration, temperature and pressure.

- Concentration;
 - o measured;

Signal representing the concentration value is measured on input channel. One channel in I/O signal setup section should be configured as "Special" signal type.

- o keypad;
 - keypad concentration value;
- Unit of measurement for concentration;

If the concentration is fixed then the unit of measurement is selectable form the list:

- $\circ % (V/V)$; (volume %)
- o % (m/m); (mass %)

If the concentration is measured then the unit of measurement is fixed to volume %.

- Volume press. corr. (Pressure volume correction mode);
 It pressure volume correction is enabled then compression factor shall be entered.
 - o no;
 - o yes;
- Compression factor keypad value;
- Dynamic viscosity keypad value;

9.2.2.1.1.5.3 General liquid

Route in the menu tree:

Parameters	Streams	Physical stream	Stream 1.	
		Fluid	Liquid	General liquid

The general liquid data page is shown on the figure below.

Function of the F keys on the General liquid data page

- select the next field for editing
- **企** select the previous field for editing
- ⇒ enter into submenu for gas composition editing

Change modify the selected data field

OK Confirm the selection

Save save the selected/entered data and returns to the parent menu.

06.Str. GEN.LIQUID-VORTEX				
Fluid general liquid				
Base temperature 15	°C			
Base pressure 1	bar			
Line density mode calculated				
Base density 800	kg∕m³			
Volume th.exp.fact. 0.001	1∕°C			
Volume pres.corr. no				
Dynamic viscosity 1.0000e-05	Pasec			
Heat capacity averaging				
Cp spec.heat.capac. 3.534	kJ∕kgK			
Save Change				

Figure 9-81 General liquid data page

The data fields on the data page are as follows:

- Fluid;
 - Not editable, fixed to General liquid
- Base temperature;

The base temperature selected from list

- o 20 °C;
- o 15 °C;
- o 0 °C;
- Base pressure; Not editable, fixed to 1 bar.
- Density mode;

The density mode selected from the list:

o measured;

Signal representing the line density value is measured on input channel. One channel in I/O signal setup section should be configured as "Line density" signal type.

- calculated;
 If density mode is calculated then the density at base conditions shall be provided. The line density will be calculated based on the base density, temperature and pressure.
- Base density keypad value;
- Coefficient of thermal expansion; Keypad value shall be entered.
- Pressure volume correction mode; It pressure volume correction is enabled then compression factor shall be entered.
 - o no;
 - o yes;
- Compression factor; Keypad value shall be entered.
- Dynamic viscosity;
 - Keypad value shall be entered.
- Heat capacity;

The method of the determination of heat capacity is selected from the list:

o average;

Average heat capacity is entered as keypad value.

- o calculated a*T(°C)+b;
 - Heat capacity is calculated as the linear function of the temperature.
- Cp specific Heat capacity (appears if heat capacity is average);
- a (appears if heat capacity is calculated a*T(°C)+b);
- b (appears if heat capacity is calculated a*T(°C)+b);

9.2.2.1.1.5.4 Liquid mixture

Route in the	e menu tree:			
Parameters	Streams	Physical stream	Stream 1.	
		Fluid	Liquid	Liquid mixture

The liquid mixture data page is shown on the figure below.

Function of the F keys on the Liquid mixture data page

- select the next field for editing
- ŵ select the previous field for editing
- ⇒ enter into submenu for gas composition editing
- Change modify the selected data field
- **OK** Confirm the selection

Save save the selected/entered data and returns to the parent menu.

07.Str. LIQUID MIXTCORIOLIS				
Fluid li	quid mixture			
Base temperature	15	°C		
Base pressure	1	bar		
Flow meas.for	Fluid1			
Fluid1	crude oil			
Fluid2	products			
Fluid1 base density	952	kg∕m³		
Fluid2 base density	780	kg∕m³		
Vol.contr.fact	1			
Volume pres.corr.	no			
Mixture dyn.viscos.	0.001	Pasec		
Save Change				

Figure 9-82 Liquid mixture data page

The liquid mixture fluid option is intended for application where flow of mixture of two different liquids is measured. The density of the mixture is measured as well. Beside the measurement of flow of the mixture the two separate flows for the components the mixture consists of shall be determined. Example of such application is measurement of the mixture of crude oil and gasoline pumped into pipeline.

The data fields on the data page are as follows:

• Fluid;

Not editable, fixed to Liquid mixture

Base temperature;

The base temperature selected from list

- o 20 °C;
- o 15 °C;
- o 0 °C;
- Base pressure; Not editable, fixed to 1 bar.
- Flow measured for;

Selected from the list:

- o fluid 1;
- o fluid 2;
- o mixture;

One metering stream of UNIFLOW-200 measures (calculates) and totalizes flow for one single fluid.

To have flows and totals for the two liquid components and for the mixture three streams shall be defined with identical parameters except this parameter. In each stream its own fluid to be selected in this data entry.

- Fluid 1 type;
 - Selected from the list:
 - o crude oil;
 - o product;
 - O NGL & LPG
 - o general liquid;
- Fluid 2 type;
 - Selected from the list:
 - o crude oil;
 - o product;
 - O NGL & LPG
 - o general liquid;
- Fluid 1 base density;

Keypad value shall be entered.

- Fluid 1 thermal expansion factor;
 - Keypad value shall be entered.

It is appears only if Fluid 1 type is General liquid.

In case of crude oil and products thermal expansion factor is calculated according to 53A/54A and 53B/54B respectively.

In case of LPG & LNG thermal expansion factor is calculated according to Table 53E/54E (metric units) or Table 23E/24E (imperial units).

- Fluid 2 base density; Keypad value shall be entered. Fluid 1 base density and Fluid 2 base density must not be equal.
- Fluid 2 thermal expansion factor; Keypad value shall be entered. It is appears only if Fluid 2 type is General liquid.

In case of crude oil and products thermal expansion factor is calculated according to 53A/54A and 53B/54B respectively.

In case of LPG & LNG thermal expansion factor is calculated according to Table 53E/54E (metric units) or Table 23E/24E (imperial units).

- Volume contraction factor; Keypad value shall be entered. It takes into account the volume change in case of mixing two different fluids. Default value is 1.0 (no change in the volume), allowable range from 0.95 to 1.05
- Pressure volume correction mode;

It pressure volume correction is enabled then compression factor shall be entered.

- o no;
- o yes;
- Fluid 1 compression factor;
 - Keypad value shall be entered.

It is appears only if Fluid 1 type is General liquid. In case of crude oil and products compression factor is calculated according to MPMS Chapter 11.1.

In case of LPG & LNG compression factor is calculated according to Chapter 12.2.2M (metric units) or Chapter 12.2.2 (imperial units).

- Fluid 2 compression factor;
 - Keypad value shall be entered.

It is appears only if Fluid 2 type is General liquid. In case of crude oil and products compression factor is calculated according to MPMS Chapter 11.1.

In case of LPG & LNG compression factor is calculated according to Chapter 11.2.2M (metric units) or Chapter 12.2. (imperial units).

 Mixture dynamic viscosity; Keypad value shall be entered.

9.2.2.1.1.5.5 Other

The "Other" fluid selection is intended for the fluids which are not listed in the previous paragraphs and where no flow calculation but only totalization of the flow signal is required.

Example of such measurement is the electrical power measurement.

The unit for the input channel representing the flow rate (in case of the electrical power measurement) shall be selected as MW or MVA in this case.

The flow meter shall be selected as "Other".

No data page will appear in this case. Message ""Other fluid selected" and "Other flow meter selected" will appear on the screen for fluid and flow meter selection respectively.

9.2.2.1.2 Flow meter selection

After the fluid is selected and the parameters are setup the flow meter shall be defined.

Depending on the flow meter selected the flow meter specific data page appears.

The figures in this chapter explain the parameters of the different flow meters to be defined and the options available for selection.

Function of the F keys on the Flow meter selection data pages

- ♣ select the next field for editing
- ŵ select the previous field for editing
- ⇒ enter into submenu for error curve editing
- Change modify the selected data field

OK Confirm the selection

Save save the selected/entered data and returns to the parent menu.

9.2.2.1.2.1 Differential pressure devices

9.2.2.1.2.1.1 Orifice plate

Parameters	Streams	Physical stream	Stream 1.	
		Elow motor	Diff proce device	Orifico motor
		Flow meter	Diff. press. device	Orifice meter

01.Str. NGAS-ORIFICE	
Flow meter	Orifice plate
dP tappings	Flange
Flow standard	IS05167:2003
Pipe diam.at 20°C	200 mm
Bore diam.at 20°C	100 mm
Pipe th. expansion	1.0000e-05 1∕°C
Orifice th.expans.	2.0000e-05 1∕°C
Temperature tapping	ys downstream
Measured temp. corr	. yes
Pipe diam.press.corr	no no
P transmit.level cor	r. Ømm
Save Change	

Figure 9-83 Orifice plate meter data page

The data fields on the data page are as follows:

- dP tappings (Differential pressure tappings); Selected from the list:
 - o flange;
 - o corner;
 - D and D/2;
 - Flow standard;

Selected from the list:

- o ISO 5167:1991;
- o ISO 5167:1998;
- o ISO 5167:2003;
- o GOST 8.563:1997;
- o GOST 8.586:2005;
- o AGA 3:1990
- o AGA 3:2012
- Pipe diameter at 20 oC; Keypad value shall be entered.
- Orifice bore diameter at 20 oC; Keypad value shall be entered.

In case of flow standards ISO 5167 (any edition) and AGA 3 (any edition) the thermal expansion coefficients are entered as follows

- Pipe thermal expansion coefficient; Keypad value shall be entered.
- Orifice thermal expansion coefficient; Keypad value shall be entered.

In case of flow standards GOST 8.563-1997 or GOST 8.586-2005 the thermal expansion coefficients are entered as follows

- Pipe th. exp. mode (Pipe thermal expansion factor mode)
 - o calculated;

Selection list is opened and the material of the pipe can be selected from the list. See Table 9-10. Thermal expansion coefficient is calculated according to GOST 8.563-1997 or GOST 8.586-2005 respectively.

o keypad;

The operator entered keypad value is used in the flow calculation

- Orifice th. exp. mode (Orifice thermal expansion factor mode)
 - o calculated;

Selection list is opened and the material of the pipe can be selected from the list. See Table 9-10. Thermal expansion coefficient is calculated according to GOST 8.563-1997 or GOST 8.586-2005 respectively.

o keypad;

The operator entered keypad value is used in the flow calculation

- Temperature tappings; (Available only if flow standard is ISO 5167 (any edition))Selected from the list:
 - o upstream;
 - o downstream;
- Measured temperature correction;

Appears only if downstream temperature tapping is selected.

If enabled the in case of 1505167:1991 flow standard isentropic correction, in case of 1505167:1998 and 1505167:2003 flow standard isenthalpic correction is applied to the temperature measured downstream to calculate the upstream temperature.

No measured temperature correction is applied in case of any other flow standard. Selected from the list:

- o no;
- o yes;
- Pipe diameter pressure correction;

If enabled then the pipe diameter is corrected for the internal pressure before the thermal expansion calculation is applied.

Selected from the list:

- o no;
- o yes;
- Pipe wall thickness; It is appears only if Pipe diameter pressure correction is enabled. Keypad value shall be entered.
- Pipe Young modulus; It is appears only if Pipe diameter pressure correction is enabled. Keypad value shall be entered.
- Pipe wall roughness; It is appears only if Flow standard GOST 8.563 or GOST 8.586 is selected. Keypad value shall be entered.
- Orifice rounding radius; It is appears only if Flow standard GOST 8.563 or GOST 8.586 is selected. Keypad value shall be entered.
- Interval between checks; It is appears only if Flow standard GOST 8.563 or GOST 8.586 is selected. Keypad value shall be entered.
- Pressure transmitter level correction;

It compensates the hydrostatic pressure of the fluid in the pressure transmitter impulse line. The sign shall be:

plus (+) if the pressure transmitter located above the pressure tapping points minus (-)if the pressure transmitter located below the pressure tapping points In case of gas flow measurement the level correction can be neglected. Keypad value shall be entered.

No	GOST 8.563-1997	GOST 8.586-2005
1	8	35L
2	10	45L
3	15	20HML
4	15M	12H18N9TL
5	16M	15K_20K
6	20	22K
7	20M	16GS 09G2S
8	25	09G2S
9	30	10

10	35	15	
11	H6SzM	20	
12	H7SzM	30_35	
13	12MH	40_45	
14	12H1MF	10G2	
15	12H17	38HA	
16	12H18N9T	40H	
17	12H18N10T	15HM	
18	14H17N2	30HM_30HMA	
19	15HMA	12H1MF	
20	15H1M1F	25H1MF	
21	15H5M	25H2M1F	
22	15H12ENMF	15H5M	
23	17H18N9	18H2N4MA	
24	20H23N13	38HN3MFA	
25	36H18N25Sz2	08H13	
26		12H13	
27		20H13	
28		30H13	
29		10H14G14N4T	
30		08H18N10	
31		12H18N9T	
32		12H18N10_12T	
33		08H18N10T	
34		08H22N6T	
35		37H12N8G8MFB	
36		31H19N9MVBT	
37		06HN28MDT	
38		20L	
39		25L	
·	4		

Table 9-10 Type of steels in GOST standards

9.2.2.1.2.1.2	Nozzle			
Route in the n	nenu tree:			
Parameters	Streams	Physical stream	Stream 1.	
		Flow meter	Diff. press. device	Nozzle
		04.04 0 m D4		
		01.Str. STR1 Flow meter	Nozzle	
		Nozzle type	ISA-1932	
		Pipe diam.at 20°C	200 mm	
		Bore diam.at 20°C Pine the expansion	100 mm 1.1000e-05 1/	°C
		Orifice th.expans.		
		Temperature tappi		
		Pipe diam.press.co P transmit.level c		
		r transmit.level c	orr. 6 mm	
		Save Change		
				_
			I	

Figure 9-84 Nozzle data page

The data fields on the data page are as follows:

• Nozzle type;

Selected from the list:

- ISA-1932;
- Long radius;
- Venturi nozzle;

The flow standard applied for the nozzle calculation is ISO 5167:2003.

In case of flow standards ISO 5167 (any edition) and AGA 3 (any edition) the thermal expansion coefficients are entered as follows

- Pipe diameter at 20 oC; Keypad value shall be entered.
- Orifice bore diameter at 20 oC; Keypad value shall be entered.
- Pipe thermal expansion coefficient; Keypad value shall be entered.
- Orifice plate thermal expansion coefficient; Keypad value shall be entered.

In case of flow standards GOST 8.563-1997 or GOST 8.586-2005 the thermal expansion coefficients are entered as follows

- Pipe th. exp. mode (Pipe thermal expansion factor mode)
 - o calculated;

Selection list is opened and the material of the pipe can be selected from the list. See Table 9-10. Thermal expansion coefficient is calculated according to GOST 8.563-1997 or GOST 8.586-2005 respectively.

o keypad;

The operator entered keypad value is used in the flow calculation

- Orifice th. exp. mode (Orifice thermal expansion factor mode)
 - o calculated;

Selection list is opened and the material of the pipe can be selected from the list. See Table 9-10. Thermal expansion coefficient is calculated according to GOST 8.563-1997 or GOST 8.586-2005 respectively.

o keypad;

The operator entered keypad value is used in the flow calculation Temperature tapping;

Selected from the list:

- o upstream;
- o downstream;
- Measured temperature correction;

Appears only if downstream temperature tapping is selected.

If enabled the in case of 1505167:1991 flow standard isentropic correction, in case of 1505167:1998 and 1505167:2003 flow standard isenthalpic correction is applied to the temperature measured downstream to calculate the upstream temperature. No measured temperature correction is applied in case of any other flow standard. Selected from the list:

- o no;
- o yes;
- Pipe diameter pressure correction;

If enabled the then the pipe diameter is corrected for the internal pressure before the thermal expansion calculation is applied.

Selected from the list:

- o no;
- o yes;
- Pipe wall thickness;

It is appears only if Pipe diameter pressure correction is enabled. Keypad value shall be entered.

- Pipe Young modulus; It is appears only if Pipe diameter pressure correction is enabled. Keypad value shall be entered.
- Pressure transmitter level correction; It compensates the hydrostatic pressure of the fluid in the pressure transmitter impulse line. The sign shall be: plus (+) if the pressure transmitter located above the pressure tapping points minus (-) if the pressure transmitter located below the pressure tapping points

In case of gas flow measurement the level correction can be neglected. Keypad value shall be entered.

9.2.2.1.2.1.3 Venturi tube	
Route in the menu tree:	
Parameters Streams	Physical stream Stream 1.
	Flow meter Diff. press. device Venturi tube
	01.Str. STR1 Flow meter Venturi tube
	Venturi type Venturi machined
	Pipe diam.at 20°C 200 mm
	Bore diam.at 20°C 100 mm
	Pipe th. expansion 1.1000e-05 1/°C Orifice th.expans. 1.6000e-05 1/°C
	Temperature tappings upstream
	Pipe diam.press.corr. no
	P transmit.level corr. 0 mm
	Save Change L
	Figure 9-85 Venturi tube data page

The data fields on the data page are as follows:

• Venturi type;

Selected from the list:

- Venturi machined;
- Venturi as cast;
- Venturi rough-welded;

The flow standard applied for the Venturi tube calculation is ISO 5167:2003.

- Pipe diameter at 20 oC; Keypad value shall be entered.
- Orifice bore diameter at 20 oC; Keypad value shall be entered.

In case of flow standards ISO 5167 (any edition) and AGA 3 (any edition) the thermal expansion coefficients are entered as follows

- Pipe thermal expansion coefficient; Keypad value shall be entered.
- Orifice plate thermal expansion coefficient; Keypad value shall be entered.

In case of flow standards GOST 8.563-1997 or GOST 8.586-2005 the thermal expansion coefficients are entered as follows

- Pipe th. exp. mode (Pipe thermal expansion factor mode)
 - o calculated;

Selection list is opened and the material of the pipe can be selected from the list. See Table 9-10. Thermal expansion coefficient is calculated according to GOST 8.563-1997 or GOST 8.586-2005 respectively.

o keypad;

The operator entered keypad value is used in the flow calculation

- Orifice th. exp. mode (Orifice thermal expansion factor mode)
 - o calculated;

Selection list is opened and the material of the pipe can be selected from the list. See Table 9-10. Thermal expansion coefficient is calculated according to GOST 8.563-1997 or GOST 8.586-2005 respectively.

o keypad;

The operator entered keypad value is used in the flow calculation

• Temperature tapping;

Selected from the list:

- o upstream;
- o downstream;
- Measured temperature correction;

Appears only if downstream temperature tapping is selected.

If enabled the in case of 1505167:1991 flow standard isentropic correction, in case of 1505167:1998 and 1505167:2003 flow standard isenthalpic correction is applied to the temperature measured downstream to calculate the upstream temperature.

No measured temperature correction is applied in case of any other flow standard. Selected from the list:

- o no;
- o yes;
- Pipe diameter pressure correction;

If enabled the then the pipe diameter is corrected for the internal pressure before the thermal expansion calculation is applied.

Selected from the list:

- o no;
- o yes;
- Pipe wall thickness;

It is appears only if Pipe diameter pressure correction is enabled. Keypad value shall be entered.

- Pipe Young modulus; It is appears only if Pipe diameter pressure correction is enabled. Keypad value shall be entered.
- Pressure transmitter level correction; It compensates the hydrostatic pressure of the fluid in the pressure transmitter impulse line. The sign shall be: plus (+) if the pressure transmitter located above the pressure tapping points

minus (-) if the pressure transmitter located above the pressure tapping points in case of gas flow measurement the level correction can be neglected. Keypad value shall be entered.

Route in the menu tree:			
Parameters Streams	Physical stream	Stream 1.	
	Flow meter	Diff. press. device	Segmental orifice plate
	01.Str. STR1 Flow meter	Segm. orif. plate	
	Pipe diam.at 20°C	200 mm	
	Error curve Average C	no 1	
	P transmit.level	corr. Ø mm	
	Save Chang		

Figure 9-86 Segmental orifice plate data page

The data fields on the data page are as follows:

- Pipe diameter at 20 oC; Keypad value shall be entered.
- Calibration curve;
 Selected from the list:

o no;

o yes;

If calibration curve is enabled then maximum 10 differential pressures and the corresponding flow coefficient (C) can be entered here from the calibration certificate of the meter.

- dPn; (n = 1 to 10)
- Cn; (n = 1 to 10)
- Average C;

Appears only if calibration curve is disabled

Keypad value of the average flow coefficient shall be entered.

• Pressure transmitter level correction;

It compensates the hydrostatic pressure of the fluid in the pressure transmitter impulse line. The sign shall be:

plus (+) if the pressure transmitter located above the pressure tapping points minus (-) if the pressure transmitter located below the pressure tapping points In case of gas flow measurement the level correction can be neglected. Keypad value shall be entered.

9.2.2.1.2.1.5 V-Cone meter

Route in the menu tree:				
Parameters Streams	Physical stream	Stream 1.		
	Flow meter	Diff. press. device	V-Cone meter	
	01.Str. STR1			
	Flow meter	V-Cone meter		
	Pipe diam.at 20°C	200		
	Orifice bore diame [.] CØ coefficient	t 100 0.775	mm	
		0.775 4.0000e-05		
	Pipe th. expansion		1.4°C	
	Orifice th.expans.	1.6000e-05	1/°C	
	Pipe diam.press.com		no	
	P transmit.level co		mm	
	Save Change			

Figure 9-87 V-Cone meter data page

The data fields on the data page are as follows:

- Pipe diameter at 20 oC; Keypad value shall be entered.
- Equivalent orifice bore diameter at 20 oC; Keypad value shall be entered.
- C0 coefficient:

Keypad value shall be entered from the certificate of the meter.

- B coefficient; Keypad value shall be entered from the certificate of the meter.
- Pipe thermal expansion coefficient; Keypad value shall be entered.
- Orifice plate thermal expansion coefficient; Keypad value shall be entered.
- Pipe diameter pressure correction; If enabled the then the pipe diameter is corrected for the internal pressure before the thermal expansion calculation is applied. Selected from the list:
 - - o no;
 - o yes;
- Pipe wall thickness;

It is appears only if Pipe diameter pressure correction is enabled. Keypad value shall be entered.

 Pipe Young modulus; It is appears only if Pipe diameter pressure correction is enabled. Keypad value shall be entered.

• Pressure transmitter level correction;

It compensates the hydrostatic pressure of the fluid in the pressure transmitter impulse line. The sign shall be:

plus (+) if the pressure transmitter located above the pressure tapping points minus (-) if the pressure transmitter located below the pressure tapping points In case of gas flow measurement the level correction can be neglected. Keypad value shall be entered.

9.2.2.1.2.1.6 Compact/Conditioning orifice plate

. . ..

Route in the menu tree:	
Parameters Streams	Physical stream Stream 1.
	Flow meter Diff. press. device Compact orifice
	01.Str. STR1
	Flow meter Compact orifice
	dP tappings Flange
	Flow standard ISO5167:2003 Pipe diam.at 20°C 200 mm
	Bore diam.at 20°C 100 mm
	Pipe th. expansion 1.1000e-05 1/°C
	Orifice th.expans. 1.6000e-05 1/°C
	Calibration factor 0.987
	Temperature tappings upstream Pipe diam.press.corr. no
	Pipe diam.press.corr. no P transmit.level corr. 0 mm
	Save Change 🗘 🕇

Figure 9-88 Compact/conditioning orifice plate data page

The data fields on the data page are as follows:

- dP tappings (Differential pressure tappings); Selected from the list:
 - o flange;
 - o corner;
 - D and D/2;
- Flow standard; Selected from the list:
 - o ISO5167:1991;
 - o ISO5167:1998;
 - o ISO5167:2003;
- Pipe diameter at 20 °C; Keypad value shall be entered.
- Orifice bore diameter at 20 °C;

Keypad value shall be entered.

- Pipe thermal expansion coefficient; Keypad value shall be entered.
- Orifice plate thermal expansion coefficient; Keypad value shall be entered.
- Calibration factor; Keypad value shall be entered from the calibration certificate of the meter.
- Temperature tapping; Selected from the list:
 - o upstream;
 - o downstream;
- Measured temperature correction;

Appears only if downstream temperature tapping is selected.

If enabled the in case of 1505167:1991 flow standard isentropic correction, in case of 1505167:1998 and 1505167:2003 flow standard isenthalpic correction is applied to the temperature measured downstream to calculate the upstream temperature.

No measured temperature correction is applied in case of any other flow standard. Selected from the list:

- o no;
- o yes;
- Pipe diameter pressure correction;

If enabled the then the pipe diameter is corrected for the internal pressure before the thermal expansion calculation is applied.

Selected from the list:

- o no;
- o yes;
- Pipe wall thickness;

It is appears only if Pipe diameter pressure correction is enabled. Keypad value shall be entered.

- Pipe Young modulus; It is appears only if Pipe diameter pressure correction is enabled. Keypad value shall be entered.
- Pressure transmitter level correction;

It compensates the hydrostatic pressure of the fluid in the pressure transmitter impulse line. The sign shall be:

plus (+) if the pressure transmitter located above the pressure tapping points minus (-)if the pressure transmitter located below the pressure tapping points In case of gas flow measurement the level correction can be neglected. Keypad value shall be entered.

9.2.2.1.2.2 Annubar

Route in the n	nenu tree:				
Parameters	Streams	Physical stream	Stream 1.	Flow meter	Annubar

01.Str. STR1		
Flow meter	Annubar	
Туре	DiamondII+_15	
Sensor factors	no	
Structural dP max.	2000	mbar
Pipe inter.diameter	200	mm
Pipe th.exp.coeff.	1.1000e-05	1∕°C
Pipe diam.press.cor	r. yes	
Wall thickness	20	mm
Young modulus	2000000	bar
P transmit.level cor	vr. 0	mm
Save Change		

Figure 9-89 Annubar data page

The data fields on the data page are as follows:

Type

The type of the Annubar meter selected from the list:

- o Diamond II+ 10;
- o Diamond II+ 15;
- o Diamond II+ 25;
- o Diamond II+ 35;
- o Diamond II+ 45;
- o 485 D1;
- o 485 D2;
- o 485 D3;
- o Other;
- Sensor factors;

Selected from the list:

- o no;
- o yes;

If sensor factors are enabled then entry fields appear as follows.

- sensor width;
- sensor C1 constant;
- sensor C2 constant;
- thermal expansion coefficient;
- minimum Reynolds number;

Sensor width and thermal expansion coefficient are editable for all type of Annubar. C1 and C2 constant and minimum Reynolds number are editable only if "Other" Annubar type is selected. For standard Annubars the manufacturer's constants are applied.

Structural dP max;

Keypad value shall be entered.

- Pipe diameter at 20 oC; Keypad value shall be entered.
- Pipe thermal expansion coefficient; Keypad value shall be entered.
- Pipe diameter pressure correction; If enabled the then the pipe diameter is corrected for the internal pressure before the thermal expansion calculation is applied. Selected from the list:
 - o no;
 - o yes;
- Pipe wall thickness; It is appears only if Pipe diameter pressure correction is enabled. Keypad value shall be entered.
- Pipe Young modulus; It is appears only if Pipe diameter pressure correction is enabled. Keypad value shall be entered.
- Pressure transmitter level correction;

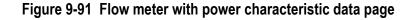
It compensates the hydrostatic pressure of the fluid in the pressure transmitter impulse line. The sign shall be:

plus (+) if the pressure transmitter located above the pressure tapping points minus (-)if the pressure transmitter located below the pressure tapping points In case of gas flow measurement the level correction can be neglected. Keypad value shall be entered.

9.2.2.1.2.3 Gas turbine meter, Liquid turbine meter, Vortex meter, Mass flow meter, Ultrasonic meter, Rotameter, Electromagnetic meter, CVOL flow meter, Stream

Parameters Streams Physical stream Stream n.	
Tarameters Streams Thysical stream Stream.	
Flow meter Turbine meters Gas turbine	
Liquid turbine	
Parameters Streams Physical stream Stream n. Flow meter Vortex met	
Mass flow	
Ultrasonic	neter
Rotameter	netic flow meter
CVOL flow	
	motor
03.Str. NGAS-TURBINE	
Flow meter Turbine meter	
Pipe diam.at 20°C 200 mm	
Correction factor 1 P transmit.level corr. 0 mm	
Save Change T	

Figure 9-90 Gas turbine meter, Liquid turbine meter, Vortex meter, Mass flow meter, Ultrasonic meter, Rotameter, Electromagnetic meter, CVOL flow meter, Stream data page


The data fields on the data page are as follows:

- Pipe diameter at 20 oC; Keypad value shall be entered.
- Correction factor; A multiplier can be entered here to apply to the reading of the meter. Default value is 1.0.

 Pressure transmitter level correction; It compensates the hydrostatic pressure of the fluid in the pressure transmitter impulse line. The sign shall be: plus (+) if the pressure transmitter located above the pressure tapping points minus (-)if the pressure transmitter located below the pressure tapping points In case of gas flow measurement the level correction can be neglected. Keypad value shall be entered.

Route in the menu tree: Parameters Streams	Physical stream	Stream 1.	Flow meter	Power char. meter
	01.Str. STR1 Flowmeter with powe	n chanactenisti		
	Correction factor	1		
	Error curve Multiplier	no 1		
	Exponent	0.5		
	Bias Pipe diam.at 20°C	0 200 mi		
	P transmit.level cor			

9.2.2.1.2.4 Flow meter with power characteristic

Save Change

The equation of this type of flow meter implemented in UNIFLOW-200 is as follows:

 $q_V = MF \cdot (A \cdot J^n + B)$

where: q_V - volume flow rate, m³/h

- MF correction factor, -
- A multiplier, -
- n exponent, -
- B bias, -
- J input signal, %

The data fields on the data page are as follows:

- Correction factor; A multiplier can be entered here to apply to the reading of the meter. Default value is 1.0.
- Calibration curve; Selected from the list:
 - o no;
 - o yes;

If calibration curve is enabled then maximum 10 input signal (%) and the corresponding multiplier can be entered here from the calibration certificate of the meter.

- Input signal n; (n = 1 to 10)
- Multiplier n; (n = 1 to 10)
- Exponent
- Bias;
- Pipe diameter at 20 oC;
- Keypad value shall be entered.
- Pressure transmitter level correction;

9.2.2.1.2.5 Other

Route in the m	ienu tree:				
Parameters	Streams	Physical stream	Stream 1.	Flow meter	Other

The "Other" flow meter selection is intended for the flow meters which are not listed in the previous paragraphs and where no flow calculation but only totalization of the flow signal is required. Example of such measurement is the electrical power measurement.

Example of such measurement is the electrical power measurement.

The unit for the input channel representing the flow rate (in case of the electrical power measurement) shall be selected as MW or MVA in this case.

The fluid shall be selected as "Other".

No data page will appear in this case. Message ""Other fluid selected" and "Other flow meter selected" will appear on the screen for fluid and flow meter selection respectively.

9.2.2.1.2.6 Stream

Route in the menu tree:			
Parameters Streams	Physical stream	Stream 1.	low meter Stream
08.Str. ASZK		08.Str. ASZK	
Stream setup		Stream setup	
Fluid selected	natural gas	Stream setup Stream param.	CVOL flowrate
	•	-	
Units	Total Flowrate	Flow signal mode	calculated
Volume	m³ m³/h	Pressure	measured
Mass	t t/h		1 IO 2 ch.
Energy	GJ GJ/h	Temperature 1	measured
Flow meter	Stream		1 IO 5 ch.
Stream nr.	1	Temperature 2	keypad
Stream param.	CVOL flowrate	keypad value	13 °C
Flow signal mode	calculated	Stream disabling	no
Pressure	measured	Batch	no
	1 I0 2 ch.	Meter serial tes	
Temperature 1	neasured	Transm. calibrat:	
Save Chang		Save Chang	

Figure 9-92 Stream flow meter definition in Stream setup menu

The "Stream" flow meter selection is intended for the case when the flow signal is set as volume at line or at base conditions or mass flow rate of any other stream. The assignment of the source stream is done in the Stream setup menu.

Example of such measurement is the multi tariff measurement of the gas flow. It means that different flow rate ranges of the gas are totalized in different streams.

9.2.2.1.3 Stream setup

After the fluid and the flow meter are selected the stream setup procedure should be completed. In the Stream setup menu the field I/O channels are assigned to the process parameters required in the flow calculation. Some additional parameters required for proper signal processing are entered also.

Depending on the fluid and the flow meter selected specific for that selection Stream setup data page will appear. The number of different fluids and the number of flow meters UNIFLOW-200 is capable to operate with is large. To list all the combinations of fluids and flow meters is not practical, if not impossible here.

Some typical data pages are shown below. They show all of the parameters that appear in setup procedure but maybe in different combination.

It is important to note that the signal setup completed in I/O signal setup section must be synchronized with the stream setup. It means that type of the signal and the unit of measurement selected for the signal must correspond to the signal and unit of measurement required in the flow calculation and the I/O channel assigned to.

The limitations listed below should be observed.

Flow signals:

- differential pressure devices and Annubar;
 - o unit: mbar;
 - o signal mode: 4-20 mA I/O channel, Modbus channel, keypad
- gas and liquid turbine meter, Vortex meter, ultrasonic meter, electromagnetic flow meter, CVOL flow meter
 - o unit: m3/h (at line conditions, at base conditions in case of CVOL flow meter);
 - o signal mode: 4-20 mA I/O channel, pulse I/O channel, Modbus channel, keypad
- rotaméter;
 - unit: m3/h (at line conditions);
 - o signal mode: 4-20 mA I/O channel, Modbus channel, keypad
- mass flow meter;
 - o unit: kg/h;
 - o signal mode: 4-20 mA I/O channel, pulse I/O channel, Modbus channel, keypad
 - flow meter with power characteristic;
 - o unit: %;
 - \circ signal mode: 4-20 mA I/O channel, Modbus channel, keypad

Pressure signal

- o unit: bar;
- o signal mode: 4-20 mA I/O channel, Modbus channel, keypad

Temperature signal

- o unit: oC;
- o signal mode: 4-20 mA I/O channel, Pt100 I/O channel, Modbus channel, keypad

Density signal

- o unit: kg/m3;
- o signal mode: 4-20 mA I/O channel, frequency I/O channel, Modbus channel, keypad

Calorific value signal

- unit: MJ/m3 or kg/m3;
- o signal mode: 4-20 mA I/O channel, Modbus channel, keypad

Concentration signal

- unit: % (percent);
- o signal mode: 4-20 mA I/O channel, Modbus channel, keypad

In the Stream setup menu the unit of measurement for volume, mass and energy shall be selected. In the Table 9-11. below the available units are listed for both metric and imperial systems.

Fluid	Quantity	Metric units	Metric units		Imperial units	
		Total	Flow rate	Total	Flow rate	
Gas	Volume	- m ³ - 10 ^{3.} m ³ - 10 ^{6.} m ³ - I - ml	- m ³ /h - 10 ³ ·m ³ /h - 10 ⁶ ·m ³ /h - I/h - ml/h	- MCF - MMCF	- MCF/h - MMCF/h	
	Mass	- kg - g - t	- kg/h - g/h - t/h	- Ib	- Ib/h	
	Energy	- GJ - MJ - kWh - MWh	- GJ/h - MJ/h - kWh/h - MWh/h	- MMBTU	- MMBTU/h	
Liquid	Volume	- m ³ - 10 ^{3.} m ³ - 10 ^{6.} m ³ - I - ml	- m ³ /h - 10 ³ ·m ³ /h - 10 ⁶ ·m ³ /h - I/h - ml/h	- bbl	- bbl/h	
	Mass	- kg - g - t	- kg/h - g/h - t/h	- Mlb	- Mlb/h	

Energy	- GJ	- GJ/h	- MMBTU	- MMBTU/h
	- MJ	- MJ/h		
	- kWh	- kWh/h		
	- MWh	- MWh/h		

Steam	Volume	- m3 - 10 ^{3.} m ³ - 10 ^{6.} m ³ - I - ml	- m3/h - 10 ³ ·m ³ /h - 10 ⁶ ·m ³ /h - I/h - ml/h	not supported	not supported
	Mass	- kg - g - t	- kg/h - g/h - t/h	not supported	not supported
	Energy	- GJ - MJ - kWh - MWh	- GJ/h - MJ/h - kWh/h - MWh/h	not supported	not supported

Table 9-11 Unit of measurements for volume, mass and energy

Function of the F keys on the Stream setup data pages

- ♣ select the next field for editing
- む select the previous field for editing
- Change modify the selected data field

OK Confirm the selection

Save save the selected/entered data and returns to the parent menu.

rameters Streams	Physical stream	Stream 1. Stre	eam set up
			AR
01.Str. NGAS-ORIFICE	1	01.Str. NGAS-ORIFI	CE
Stream setup		Stream setup Switch down	95
Fluid selected	Natural gas Total Current	dP cut off	9.1
Units Volume	fotal Current m ³ m ³ /h	ar cut orr Eventing	
MASS		Pressure	yes measured
ENERGY	kg kg∕h GJ GJ∕h	rressure	neasurea 1 IO 3 c
Flow meter	orifice plate	T	neasured
Flow meter Flow signal mode	neasured	Temperature 1	1 IO 5 c
No. of dP transm.	2	Tannanatuna 2	
dP stack type	LH	Temperature 2	keypad 15
dP1L	1 IO 1 ch.	keypad value	
dP2H	1 IO 2 ch.	Stream disabling Batch	no
Switch up	98 %	Baten Meter serial test	no dis
Save		Save Change	
		Save Change	
	01.Str. NGAS-ORIFIC	E	
	Stream setup		
	dP cut off	0.1 ×	
	Eventing	yes	
	Pressure	measured	
		1 IO 3 ch.	
	Temperature 1	measured	
		1 IO 5 ch.	
	Temperature 2	keypad	
	keypad value	15 C	
	Stream disabling	no	
	Batch	no	
	Meter serial test	disabled	
	Transm. calibration	n n <u>o</u>	
	Save Change		

9.2.2.1.3.1 Stream setup example – fluid: natural gas, flow meter: orifice meter

Route in the menu tree:

Figure 9-93 Stream setup data page, fluid: natural gas, flow meter: orifice meter

07.Str. ASZK		08.Str. ASZK	
Stream setup		Stream setup	
Eventing	no	Stream disabling	no
Pressure	measured	Batch	no
	1 IO 2 ch.	Meter serial test	disabled
Temperature 1	measured	Transm. calibration	yes
	1 IO 5 ch.	Flow calibration	yes
Temperature 2	keypad	keypad value	111 mbar
keypad value	15 °C	Pressure calibration	yes
Stream disabling	from stream	keypad value (abs)	11 bar
Stream selection	1	Temp1. calibration	yes
Limit to disable	lsc -	keypad value	12 °C
Batch	no	Temp2. calibration	yes
<u>Meter serial test</u>	disabled	keypad <u>va</u> lue	1 <u>3 °C</u>
Save		Save Change	

Figure 9-94 Stream disabling and transmitter calibration data page

The data fields on the data page are as follows:

- Fluid selected; Not editable here, fixed to the fluid selected in the Fluid menu
- Units;
 - See the available units for volume, mass and energy in Table 9-11.
- Flow meter;
 - Not editable here, fixed to the flow meter selected in the Flow meter menu
- Flow signal mode;

The mode selected from the list

_

o measured;

It is assumed that differential pressure is measured on input channel(s).

In this case new data entry fields appear to enter the dP transmitter parameters.

- No. of dP transm. (Number of dP transmitters);
 - Selected from the list;
 - 1 (one differential pressure transmitter);
 - The I/O channel measuring the differential pressure is entered.
 - dP1 IO *n* Ch *m*
 - n number of I/O board
 - m number of channel on the I/O board
 - 2 (two differential pressure transmitters);
 - The configuration of the dP transmitters in case of 2 transmitters:
 - dP stack type
 - Selected from the list
 - LH (low and high range dP transmitters);

The low or high transmitter reading is used in the flow calculation, depending on the differential pressure measured and the switch down and switch up limits.

The I/O channels measuring the differential pressure is entered.

- dP1L IO n Ch m
- dP2H IO n Ch m
 - n number of I/O board

m – number of channel on the I/O board

- Switch up

Switch from low range to high range transmitter in % of the low range transmitter upper range.

- Switch down

Switch from high range to low range transmitter in % of the low range transmitter upper range.

- HH (two transmitters with identical range);

The average of the two transmitters reading is used in the flow calculation. The I/O channels measuring the differential pressure is entered.

- dP1H IO n Ch m
- dP2H IO *n* Ch *m*
 - n number of I/O board

m – number of channel on the I/O board

discrepancy (in % of the transmitter range);

Maximum deviation between the readings of the two transmitters.

- discrepancy timeout (in seconds)
- If the discrepancy exists longer then this timeout time, then alarm is raised.
- 3 (three differential pressure transmitters);
 - The configuration of the dP transmitters in case of 3 transmitters:
 - dP stack type
 - Selected from the list
 - LMH (low, medium and high range dP transmitters);

The low or medium or high range transmitter reading is used in the flow calculation, depending on the differential pressure measured and the switch down and switch up limits.

The I/O channels measuring the differential pressure is entered.

- dP1L IO n Ch m
- dP2M IO *n* Ch *m*
- dP3H IO n Ch m
 - n number of I/O board

m – number of channel on the I/O board

- Switch up

Switch from low range to medium range transmitter in % of the low range transmitter upper range. Switch from medium range to high range transmitter in % of the medium range transmitter upper range.

- Switch down

Switch from high range to medium range transmitter in % of the medium range transmitter upper range. Switch from medium range to low range transmitter in % of the low range transmitter upper range.

- LHH (one low range and two high range transmitters);

The low or high transmitter reading is used in the flow calculation, depending on the differential pressure measured and the switch down and switch up limits. The average of the two high range transmitters reading is used as high dP reading.

The I/O channels measuring the differential pressure is entered.

- dP1L IO n Ch m
- dP2H IO n Ch m
 - dP3H IO n Ch m

n – number of I/O board

m – number of channel on the I/O board

Switch up

Switch from low range to high range transmitter in % of the low range transmitter upper range.

- Switch down
 - Switch from high range to low range transmitter in % of the low range transmitter upper range.
- discrepancy (in % of the transmitter range);

Maximum deviation between the readings of the two high range transmitters.

- discrepancy timeout (in seconds) If the discrepancy exists longer then this timeout time, then alarm is raised.
- HHH (three transmitters with identical range);

The average of the three transmitters reading is used in the flow calculation if all the discrepancies are within the limit.

The mid reading is used in the flow calculation if all the discrepancies are outside the limit.

The average of the two closest readings are used in the flow calculation in all other cases.

The I/O channels measuring the differential pressure is entered.

- dP1H IO n Ch m
- dP2H IO *n* Ch *m*
- dP3H IO n Ch m
 - n number of I/O board

m – number of channel on the I/O board

- discrepancy (in % of the transmitter range);
- Maximum deviation between the readings of any two transmitters.
- discrepancy timeout (in seconds) If the discrepancy exists longer then this timeout time, then alarm is raised.
- o modbus sign.;

It is assumed that differential pressure signal is received on Modbus channel. In this case new data entry field appear to enter the dP channel parameters.

- Channel n;
 - n number of Modbus channel;
- o keypad;

Keypad flow signal (differential pressure) can be entered here. It serves for testing the flow calculation only.

NOTE

If flow signal is set to keypad the flow rate will be displayed but no totalization will be done.

• dP cut off;

Entered in % of the low range transmitter.

If the measured differential pressure is below the dP cut off limit then the differential pressure is assumed to be zero.

• Eventing dP cut off;

It is operator selectable if the dP cut off will generate entry in the event log or not.

- o yes;
- o no;
- Pressure signal mode;

The mode selected from the list

o measured;

It is assumed that pressure is measured on input channel.

The channel number should be entered here.

- IO n Ch m
- *n* number of I/O board
- m number of channel on the I/O board
- o modb. sign.;

It is assumed that pressure signal is received on Modbus channel. The channel number should be entered here.

- Channel n;
 - *n* number of Modbus channel;
- o keypad;

_

Keypad pressure can be entered here if pressure signal is not available.

- Temperature1 signal mode;
 - The mode selected from the list
 - o measured;

It is assumed that temperature is measured on input channel.

The channel number should be entered here.

- IO n Ch m
- n number of I/O board
- m number of channel on the I/O board
- o modb. sign.;

It is assumed that temperature signal is received on Modbus channel. The channel number should be entered here.

- Channel *n*;

n – number of Modbus channel;

o keypad;

Keypad temperature can be entered here if temperature signal is not available.

• Temperature2 signal mode;

Temperature2 is intended for ambient temperature measurement.

It is not used in flow calculation.

The mode selected from the list

o measured;

It is assumed that temperature is measured on input channel. The channel number should be entered here.

- IO n Ch m
- *n* number of I/O board

m – number of channel on the I/O board

o modb. sign.;

It is assumed that temperature signal is received on Modbus channel. The channel number should be entered here.

- Channel n;

n – number of Modbus channel;

o keypad;

Keypad temperature can be entered here if temperature signal is not available. Live it to keypad value if no ambient temperature measurement is required. • Stream disabling;

It is possible to disable the operation of the stream depending on different parameters. The option is selected from the list:

o no;

Stream never disabled.

o input signal;

Any I/O channel signal can be selected. One lower limit and one upper limit can be selected to disable the stream. The lower limit is selected from Isc, Io, Iolo or none.

The upper limit is selected from hsc, hi, hihi or none

The channel number and the limit causing the stream disabled should be entered here.

- IO *n* Ch *m*;
 - n number of I/O board
 - m number of channel on the I/O board
- Limit to disable;
 - Lower limit
 - 10 (low alarm limit of the I/O channel);
 - lolo (low-low alarm limit of the I/O channel);
 - lsc (low scale of the I/O channel);
 - (no lower limit will disable the stream);
 - Upper limit
 - hi (high alarm limit of the I/O channel);
 - hihi (high-high alarm limit of the I/O channel);
 - hsc (high scale of the I/O channel);
 - (no upper limit will disable the stream);
- o modbus signal;

Any Modbus channel signal can be selected. One lower limit and one upper limit can be selected to disable the stream. The lower limit is selected from lsc, lo, lolo or none. The upper limit is selected from hsc, hi, hihi or none.

The channel number and the limit causing the stream disabled should be entered here.

- Channel n;

n – number of Modbus channel;

- Limit to disable;

Lower limit

- 10 (low alarm limit of the Modbus channel);
- lolo (low-low alarm limit of the Modbus channel);
- lsc (low scale of the Modbus channel);
- (no lower limit will disable the stream);

Upper limit

- hi (high alarm limit of the Modbus channel);
- hihi (high-high alarm limit of the Modbus channel);
- hsc (high scale of the Modbus channel);
- - (no upper limit will disable the stream);

o from stream;

Any stream can be selected.

One lower limit and one upper limit can be selected to disable the stream. The lower limit is selected from lsc, lo, lolo or none.

The upper limit is selected from hsc, hi, hihi or none.

The stream number and the limit causing the stream disabled should be entered here.

- Stream n;

n – serial number of the stream from 1 to 12;

- Limit to disable;

Lower limit

- 10 (low alarm limit of the Stream n);
- lolo (low-low alarm limit of the Stream *n*);
- lsc (low scale of the Stream *n*);
 - (no lower limit will disable the stream);

Upper limit

- hi (high alarm limit of the Modbus channel);
- hihi (high-high alarm limit of the Modbus channel);
- hsc (high scale of the Modbus channel);
- (no upper limit will disable the stream);

The values of the upper and lower limits are set in the Limits menu of the Stream n being the stream disabling the current stream. The type of flow rate (volume at line or at base conditions, mass or energy flow rate) is selected also in the Limits menu of the Stream n. See 9.2.2.1.5.

• Batch;

Batch measurement is enabled or disabled here. The option is selected from the list:

o no;

No batch measurement performed.

o yes;

Batch measurement is enabled. New data entry lines appear where the parameters of the batch measurement shall be enter.

Batch start/stop

The batch start/stop method is selected here from the list of options:

- from communication interface;

The batch measurement starts and stops by writing certain Modbus registers. The mapping of the start/stop Modbus registers and also the registers where the measured data can be read from see in 10.5.2.

- start key/required quantity;

The batch measurement starts with pulse (pulse length min. 1 s) applied to the appropriate digital input.

The batch measurements stops when the required quantity (mass or volume) passed the meter run. The batch measurement can be stopped in case of emergency applying pulse (pulse length min. 1 s) to the appropriate digital input.

In case of this start/stop method new data entry lines appear as follows:

Required quantity

Selected from the list:

- volume (required quantity is entered in volume units at base conditions);
- mass (required quantity is entered in mass units);
- Batch quantity
 - Numeric entry field to enter the required batch quantity.
- Batch start input (digital input channel to start batch measurement)
 - IO *n* Ch *m*
 - n number of I/O board
 - m number of channel on the I/O board
- Batch stop input (digital input channel to stop batch measurement in case of emergency)
 - IO n Ch m
 - n number of I/O board
 - m number of channel on the I/O board
- Batch control input (digital output channel set to active state during the batch measurement)
 - IO n Ch m
 - n number of I/O board
 - m number of channel on the I/O board
- Batch type

_

The type of batch measurement is selected here from the list of options:

- Tank loading/unloading;
 - Conventional tank loading batch measurement (see 9.1.7.1).
- Pipeline product interface;

Different kind of fluids flowing in the same pipeline each after other measured as batches (see 9.1.7.2).

Available only if batch start/stop method is "from communication interface". In case to Pipeline product interface batch type new data entry line appear:

Product info

Entering into this entry line new data entry display appears where up to 16 different product type and the corresponding density at base conditions shall be entered. See also in 9.2.2.1.1.5. Liquids.

The name of the stream entered in 9.2.2.1. will be displayed on the batch report as station name. To display the results of the batch measurements see 9.1.7.

Meter serial test

Flow meter serial test measurement can be enabled or disabled here. The option is selected from the list:

o disabled;

No flow meter serial test measurement performed.

o enabled;

Flow meter serial test measurement is enabled. Serial test can be enabled on Stream 1 only. Warning message appears: Proceeding will reset all totals and parameters of stream 8. Proceed? Selecting yes two new lines appear.

- Shadow stream 8 In the non custody transfer flow computer the measured values and totals are displayed in stream 8.
- Stream

The option is selected from the list:

- custody transfer stream (slave);
 The stream being set up will perform the custody transfer measurement during the serial test. It will operate in normal way. In the data exchange between the two flow computers taking part in the flow meter serial test this flow computer will be the slave device.
- non custody transfer stream (master);
 The stream being set up will perform non custody transfer measurement during the serial test. It will display and totalize the flow in stream 8 instead of the stream being configured for the particular meter run. In the data exchange between the two flow computers taking part in the flow meter serial test this flow computer will be the master device.

See details of the meter serial test measurements in 9.1.8.

• Transmitter calibration

Calibration of the transmitters can be enabled or disabled here. When calibration is enabled for a certain transmitter keypad value shall be entered for the parameter being measured by that transmitter. In this case, the flow calculation will be performed with the keypad value of the parameter. The measured value of the input signal is still displayed in the Flow / Plant I/O / IO Board x menu allowing the calibration of the transmitter without interrupting the flow measurement. NOTE: the transmitter calibration shall be disabled after finishing the transmitter calibration to recover the normal operation of the flow computer.

The option is selected from the list:

o no;

transmitters operate in normal way.

o yes;

transmitters are being calibrated. If the yes option is selected 4 new menu item appears allowing selection of the transmitters one by one, namely:

- Flow meter
 - o no;
 - flow meter operates in normal way.
 - o yes;

flow meter is being calibrated.

Keypad value

keypad value to be used in the calculation during the transmitter calibration shall be entered.

- Pressure
 - o no;
 - pressure transmitter operates in normal way.
 - o yes;

pressure transmitter is being calibrated.

Keypad value

keypad value to be used in the calculation during the transmitter calibration shall be entered.

- Temperature 1
 - o no;

temperature 1 transmitter operates in normal way.

- o yes;
 - temperature 1 transmitter is being calibrated.
 - Keypad value
 - keypad value to be used in the calculation during the transmitter calibration shall be entered.
- Temperature 2
 - o no;
 - temperature 2 transmitter operates in normal way.
 - o yes;
 - temperature 2 transmitter is being calibrated.
 - Keypad value

keypad value to be used in the calculation during the transmitter calibration shall be entered.

9.2.2.1.3.2 Stream setup example – fluid: natural gas, flow meter: turbine meter

Ro	Route in the menu tree:					
Parameters	Streams	Physical stream	Stream 1.	Stream set up		

03.Str. NGAS-TURBI	NE		03.Str. NGAS-TURBINE		
Stream setup			Stream setup		
Fluid selected	Natur	al gas	Cut off		0.1 ×
Units	Total	Flowrate	Eventing		yes
Volume	m ³	m³∕h	Pressure	neas	ured
Mass	kg	kg∕h		1 IO	3 ch.
Energy	GJ	GJ∕h	Temperature 1	neas	ured
Flow meter	turbine	meter		1 IO	5 ch.
Flow signal mode	neasur	red	Temperature 2	key	ypad
	2 IO	1 ch.	keypad value		15 C
Check signal	neasur	red	Stream disabling		no
	2 10	2 ch.	Batch		no
Signal ratio		1	Meter serial test		disabled
Cut off	0	. <u>1 %</u>	Transm. calibration		no
Save			Save Change	↓ I	

Figure 9-95 Stream setup data page, fluid: natural gas, flow meter: turbine meter

The data fields on the data page are as follows:

- Fluid selected;
 - Not editable here, fixed to the fluid selected in the Fluid menu
- Units;

See the available units for volume, mass and energy in Table 9-11.

- Flow meter;
 - Not editable here, fixed to the flow meter selected in the Flow meter menu
- Flow signal mode;

The mode selected from the list

o measured;

It is assumed that flow signal is measured on input channel(s).

In this case the I/O channel measuring the flow signal shall be entered.

- IO *n* Ch *m*
 - n number of I/O board
 - m number of channel on the I/O board
- Check signal mode;

Check signal mode entry field appears in the next line. The mode selected from the list

- no;
- No check signal (second pulse train from the turbine meter) exists..
- measured;

In this case the I/O channel measuring the check signal shall be entered.

- IO *n* Ch *m*
 - n number of I/O board

m – number of channel on the I/O board

- Signal ratio;

The ratio of the Main signal frequency to the Check signal frequency shall be entered here.

o modb. sign.;

It is assumed that flow signal is received on Modbus channel..

In this case new data entry field appear to enter the flow signal channel parameters.

- Channel n;
 - *n* number of Modbus channel;
- o keypad;

Keypad flow signal can be entered here. It serves for testing the flow calculation only. NOTE

If flow signal is set to keypad the flow rate will be displayed but no totalization will be done.

• Cut off;

Entered in % of the maximum UVOL flow rate as defined in the signal setup menu.

If the measured flow rate is below the Cut off limit then the flow rate is assumed to be zero.

• Eventing cut off;

It is operator selectable if the Cut off will generate entry in the event log or not.

- o yes;
- o no;

Pressure signal mode;

The mode selected from the list

o measured;

It is assumed that pressure is measured on input channel. The channel number should be entered here.

- IO *n* Ch *m*
 - n number of I/O board

m – number of channel on the I/O board

o modb. sign.;

It is assumed that pressure signal is received on Modbus channel.

The channel number should be entered here.

- Channel *n*;
 - n number of Modbus channel;
- o keypad;

Keypad pressure can be entered here if pressure signal is not available.

• Temperature1 signal mode;

The mode selected from the list

o measured;

It is assumed that temperature is measured on input channel. The channel number should be entered here.

IO n Ch m

- n number of I/O board
- m number of channel on the I/O board
- o modb. sign.;

It is assumed that temperature signal is received on Modbus channel. The channel number should be entered here.

- Channel *n*:

Channel *n*;

n – number of Modbus channel;

o keypad;

Keypad temperature can be entered here if temperature signal is not available.

• Temperature2 signal mode;

Temperature2 is intended for ambient temperature measurement.

It is not used in flow calculation.

The mode selected from the list

o measured;

It is assumed that temperature is measured on input channel. The channel number should be entered here.

- IO n Ch m
 - *n* number of I/O board
 - m number of channel on the I/O board
- o modb. sign.;

It is assumed that temperature signal is received on Modbus channel. The channel number should be entered here.

Channel n;

n – number of Modbus channel;

o keypad;

Keypad temperature can be entered here if temperature signal is not available. Live it to keypad value if no ambient temperature measurement is required.

• Stream disabling;

It is possible to disable the operation of the stream depending on different parameters. The option is selected from the list:

o no;

Stream never disabled.

o input signal;

Any I/O channel signal can be selected. One lower limit and one upper limit can be selected to disable the stream. The lower limit is selected from lsc, lo, lolo or none.

The upper limit is selected from hsc, hi, hihi or none

The channel number and the limit causing the stream disabled should be entered here.

- IO *n* Ch *m*;

n – number of I/O board

m – number of channel on the I/O board

Limit to disable;

Lower limit

- 10 (low alarm limit of the I/O channel);
- lolo (low-low alarm limit of the I/O channel);
- lsc (low scale of the I/O channel);
- (no lower limit will disable the stream);

Upper limit

- hi (high alarm limit of the I/O channel);
- hihi (high-high alarm limit of the I/O channel);
- hsc (high scale of the I/O channel);
 - (no upper limit will disable the stream);
- o modbus signal;

Any Modbus channel signal can be selected. One lower limit and one upper limit can be selected to disable the stream. The lower limit is selected from lsc, lo, lolo or none. The upper limit is selected from hsc, hi, hihi or none.

The channel number and the limit causing the stream disabled should be entered here.

- Channel n;

n – number of Modbus channel;

- Limit to disable;

Lower limit

- 10 (low alarm limit of the Modbus channel);
- lolo (low-low alarm limit of the Modbus channel);
- lsc (low scale of the Modbus channel);
- (no lower limit will disable the stream);

Upper limit

- hi (high alarm limit of the Modbus channel);
- hihi (high-high alarm limit of the Modbus channel);
- hsc (high scale of the Modbus channel);
 - (no upper limit will disable the stream);
- o from stream;

Any stream can be selected.

One lower limit and one upper limit can be selected to disable the stream. The lower limit is selected from lsc, lo, lolo or none.

The upper limit is selected from hsc, hi, hihi or none.

The stream number and the limit causing the stream disabled should be entered here.

- Stream n;
 - n serial number of the stream from 1 to 12;

- Limit to disable;

Lower limit

- lo (low alarm limit of the Stream *n*);
- lolo (low-low alarm limit of the Stream *n*);
- lsc (low scale of the Stream n);
 - (no lower limit will disable the stream);

Upper limit

- hi (high alarm limit of the Modbus channel);
- hihi (high-high alarm limit of the Modbus channel);
- hsc (high scale of the Modbus channel);
- – (no upper limit will disable the stream);

The values of the upper and lower limits are set in the Limits menu of the Stream n being the stream disabling the current stream. The type of flow rate (volume at line or at base conditions, mass or energy flow rate) is selected also in the Limits menu of the Stream n. See 9.2.2.1.5.

• Batch;

Batch measurement is enabled or disabled here. The option is selected from the list:

o no;

No batch measurement performed.

o yes;

Batch measurement is enabled. New data entry lines appear where the parameters of the batch measurement shall be enter.

• Batch start/stop

The batch start/stop method is selected here from the list of options:

- from communication interface;

The batch measurement starts and stops by writing certain Modbus registers. The mapping of the start/stop Modbus registers and also the registers where the measured data can be read from see in 10.5.2.

- start key/required quantity;

The batch measurement starts with pulse (pulse length min. 1 s) applied to the appropriate digital input.

The batch measurements stops when the required quantity (mass or volume) passed the meter run. The batch measurement can be stopped in case of emergency applying pulse (pulse length min. 1 s) to the appropriate digital input.

In case of this start/stop method new data entry lines appear as follows:

• Required quantity

Selected from the list:

- volume (required quantity is entered in volume units at base conditions);
- mass (required quantity is entered in mass units);
- Batch quantity
 - Numeric entry field to enter the required batch quantity.
- Batch start input (digital input channel to start batch measurement)
 - 10 n Ch m

- n number of I/O board
- m number of channel on the I/O board
- Batch stop input (digital input channel to stop batch measurement in case of emergency)
 - IO n Ch m
 - n number of I/O board
 - m number of channel on the I/O board
- Batch control input (digital output channel set to active state during the batch measurement)
 - IO n Ch m
 - n number of I/O board
 - m number of channel on the I/O board
- Batch type

_

_

- The type of batch measurement is selected here from the list of options:
- Tank loading/unloading;
 - Conventional tank loading batch measurement (see 9.1.7.1).
- Pipeline product interface;
 - Different kind of fluids flowing in the same pipeline each after other measured as batches (see 9.1.7.2).
 - Available only if batch start/stop method is "from communication interface". In case to Pipeline product interface batch type new data entry line appear:
- Product info

Entering into this entry line new data entry display appears where up to 16 different product type and the corresponding density at base conditions shall be entered. See also in 9.2.2.1.1.5. Liquids.

The name of the stream entered in 9.2.2.1. will be displayed on the batch report as station name. To display the results of the batch measurements see 9.1.7.

• Meter serial test

Flow meter serial test measurement can be enabled or disabled here. Serial test can be enabled on Stream 1 only.

The option is selected from the list::

o disabled;

No flow meter serial test measurement performed.

o enabled;

Flow meter serial test measurement is enabled.

Warning message appears:

Proceeding will reset all totals and parameters of stream 8. Proceed? Selecting yes two new lines appear.

- Shadow stream 8 In the non custody transfer flow computer the measured values and totals are displayed in stream 8.
- Stream

The option is selected from the list:

custody transfer stream (slave);

The stream being set up will perform the custody transfer measurement during the serial test. It will operate in normal way. In the data exchange between the two flow computers taking part in the flow meter serial test this flow computer will be the slave device.

 non custody transfer stream (master);
 The stream being set up will perform non custody transfer measurement during the serial test. It will display and totalize the flow in stream 8 instead of the stream being configured for the particular meter run. In the data exchange between the two flow computers taking part in the flow meter serial test this flow computer will be the master device.

See details of the meter serial test measurements in 9.1.8.

Transmitter calibration

Calibration of the transmitters can be enabled or disabled here. When calibration is enabled for a certain transmitter keypad value shall be entered for the parameter being measured by that transmitter. In this case the flow calculation will be performed with the keypad value of the parameter. The measured value of the input signal is still displayed in the Flow / Plant I/O / IO Board x menu allowing the calibration of the transmitter without interrupting the flow measurement. NOTE: the transmitter calibration shall be disabled after finishing the transmitter calibration to recover the normal operation of the flowcomputer.

The option is selected from the list::

o no;

transmitters operate in normal way.

o yes;

transmitters are being calibrated. If the yes option is selected 4 new menu item appears allowing selection of the transmitters one by one, namely:

- Flow meter
 - o no;
 - flow meter operates in normal way.
 - o yes;

flow meter is being calibrated.

Keypad value

keypad value to be used in the calculation during the transmitter calibration shall be entered.

- Pressure
 - o no;

pressure transmitter operates in normal way.

o yes;

pressure transmitter is being calibrated.

Keypad value

keypad value to be used in the calculation during the transmitter calibration shall be entered.

- Temperature 1
 - o no;
 - temperature 1 transmitter operates in normal way.
 - o yes;

temperature 1 transmitter is being calibrated.

Keypad value

keypad value to be used in the calculation during the transmitter calibration shall be entered.

- Temperature 2
 - o no;

temperature 2 transmitter operates in normal way.

- o yes;
 - temperature 2 transmitter is being calibrated.
 - Keypad value
 - keypad value to be used in the calculation during the transmitter calibration shall be entered.

9.2.2.1.3.3	Stream setup example – fluid: natural gas, flow meter: ultrasonic meter
-------------	---

ute in the menu tree:			
arameters Streams	Physical stream	Stream 1. St	tream setup
02.Str. NGAS-US	1ETER	02.Str. NGAS-US	METER
Stream setup		Stream setup	
Fluid selected	Natural gas	Cut off	0.1 ×
Units	Total Current	Eventing	yes
Volume	m³ m³∕h	Pressure	measured
MASS	kg kg∕h		1 IO 3 ch.
ENERGY	GJ GJ∕h	Temperature 1	measured
Flow meter	ultrasonic meter		1 IO 5 ch.
Flow signal mode	modb. sign.	Temperature 2	keypad
Channel	1	keypad value	15 C
Cut off	0.1 ×	Stream disabling	no
Eventing	yes	Batch	no
Pressure	measured	Meter serial tes	t disable
	<u>1 I0</u> 3 ch.	Transm. calibrat	ion no
Save		Save Chang	

Figure 9-96 Stream setup data page, fluid: natural gas, flow meter: ultrasonic meter

The data fields on the data page are as follows:

• Fluid selected;

Not editable here, fixed to the fluid selected in the Fluid menu

Units;

See the available units for volume, mass and energy in Table 9-11.Flow meter selected; Not editable here, fixed to the flow meter selected in the Flow meter menu

• Flow signal mode;

_

The mode selected from the list

o measured;

It is assumed that the flow signal is measured on analog input channel. The channel number entered here.

- IO *n* Ch *m*;
- *n* number of I/O board

m – number of channel on the I/O board

o modb. sign. (measured at Modbus channel);

It is assumed that the flow signal is received on Modbus channel. This is the case when UNIFLOW-200 reads volume flow rate data from ultrasonic meter on modbus link. In this case new data entry field appear to enter the flow signal channel parameters.

- Channel *n*;

n – number of Modbus channel;

o keypad;

Keypad flow signal (volume flow rate at line conditions) can be entered here. It serves for testing the flow calculation only.

NOTE

If flow signal is set to keypad the flow rate will be displayed but no totalization will be done.

- Cut off (Low flow cut off); Entered in % of the high range of the flow signal input channel.
 If the measured flow is below the low flow cut off limit then the flow is assumed to be zero.
- Eventing low flow cut off;

It is operator selectable if the low flow cut off will generate entry in the event log or not.

- o yes;
- o no;
- Pressure signal mode;

The mode selected from the list

o measured;

It is assumed that pressure is measured on input channel.

The channel number should be entered here.

- IO n Ch m
- n number of I/O board
- m number of channel on the I/O board
- o modb. sign. (measured at Modbus channel);

It is assumed that pressure signal is received on Modbus channel. The channel number should be entered here.

- Channel *n*;
 - *n* number of Modbus channel;
- o keypad;

Keypad pressure can be entered here if pressure signal is not available.

• Temperature1 signal mode;

The mode selected from the list

o measured;

It is assumed that temperature is measured on input channel. The channel number should be entered here.

- IO n Ch m
- n number of I/O board
- m number of channel on the I/O board
- o modb. sign. (measured at Modbus channel);

It is assumed that temperature signal is received on Modbus channel. The channel number should be entered here.

- Channel n;
 - *n* number of Modbus channel;
- o keypad;

Keypad temperature can be entered here if temperature signal is not available.

Temperature2 signal mode;

Temperature2 is intended for ambient temperature measurement.

It is not used in flow calculation.

The mode selected from the list

o measured;

It is assumed that temperature is measured on input channel. The channel number should be entered here.

IO n Ch m

n – number of I/O board

m – number of channel on the I/O board

o modb. sign.;

It is assumed that temperature signal is received on Modbus channel.

The channel number should be entered here.

- Channel *n*;
 - *n* number of Modbus channel;
- o keypad;

Keypad temperature can be entered here if temperature signal is not available. Live it to keypad value if no ambient temperature measurement is required.

• Stream disabling;

It is possible to disable the operation of the stream depending on different parameters. The option is selected from the list:

o no;

Stream never disabled.

o input signal;

Any I/O channel signal can be selected. One lower limit and one upper limit can be selected to disable the stream. The lower limit is selected from lsc, lo, lolo or none.

The upper limit is selected from hsc, hi, hihi or none

The channel number and the limit causing the stream disabled should be entered here.

- IO *n* Ch *m*;
 - n number of I/O board

m – number of channel on the I/O board

- Limit to disable;

Lower limit

- 10 (low alarm limit of the I/O channel);
- lolo (low-low alarm limit of the I/O channel);
- lsc (low scale of the I/O channel);
- (no lower limit will disable the stream);

Upper limit

- hi (high alarm limit of the I/O channel);
- hihi (high-high alarm limit of the I/O channel);
- hsc (high scale of the I/O channel);
 - (no upper limit will disable the stream);
- o modbus signal;

Any Modbus channel signal can be selected. One lower limit and one upper limit can be selected to disable the stream. The lower limit is selected from lsc, lo, lolo or none.

The upper limit is selected from hsc, hi, hihi or none.

The channel number and the limit causing the stream disabled should be entered here.

- Channel *n*;
 - *n* number of Modbus channel;
- Limit to disable;
 - Lower limit
 - 10 (low alarm limit of the Modbus channel);
 - lolo (low-low alarm limit of the Modbus channel);

- lsc (low scale of the Modbus channel);
 - (no lower limit will disable the stream);

Upper limit

- hi (high alarm limit of the Modbus channel);
- hihi (high-high alarm limit of the Modbus channel);
- hsc (high scale of the Modbus channel);
 - (no upper limit will disable the stream);
- o from stream;

Any stream can be selected.

One lower limit and one upper limit can be selected to disable the stream. The lower limit is selected from lsc, lo, lolo or none.

The upper limit is selected from hsc, hi, hihi or none.

The stream number and the limit causing the stream disabled should be entered here.

- Stream n;

n – serial number of the stream from 1 to 12;

Limit to disable;

- Lower limit

- lo (low alarm limit of the Stream *n*);
 - lolo (low-low alarm limit of the Stream n);
 - lsc (low scale of the Stream n);
 - - no lower limit will disable the stream);

- Upper limit

- hi (high alarm limit of the Stream n);
- hihi (high-high alarm limit of the Stream n;
- hsc (high scale of the Stream n);
 - - (no upper limit will disable the stream);

The values of the upper and lower limits are set in the Limits menu of the Stream n being the stream disabling the current stream. The type of flow rate (volume at line or at base conditions, mass or energy flow rate) is selected also in the Limits menu of the Stream n. See 9.2.2.1.5.

Batch;

Batch measurement is enabled or disabled here. The option is selected from the list:

o no;

No batch measurement performed.

o yes;

Batch measurement is enabled. New data entry lines appear where the parameters of the batch measurement shall be enter.

• Batch start/stop

The batch start/stop method is selected here from the list of options:

- from communication interface;

The batch measurement starts and stops by writing certain Modbus registers. The mapping of the start/stop Modbus registers and also the registers where the measured data can be read from see in 10.5.2.

- start key/required quantity;

The batch measurement starts with pulse (pulse length min. 1 s) applied to the appropriate digital input.

The batch measurements stops when the required quantity (mass or volume) passed the meter run. The batch measurement can be stopped in case of emergency applying pulse (pulse length min. 1 s) to the appropriate digital input.

In case of this start/stop method new data entry lines appear as follows:

Required quantity

Selected from the list:

- volume (required quantity is entered in volume units at base conditions);
- mass (required quantity is entered in mass units);
- Batch quantity

Numeric entry field to enter the required batch quantity.

- Batch start input (digital input channel to start batch measurement)
 - IO *n* Ch *m*
 - n number of I/O board
 - m number of channel on the I/O board
- Batch stop input (digital input channel to stop batch measurement in case of emergency)
 - 10 *n* Ch *m*
 - n number of I/O board
 - m number of channel on the I/O board
- Batch control input (digital output channel set to active state during the batch measurement)
 - IO n Ch m
 - *n* number of I/O board
 - m number of channel on the I/O board
- Batch type

_

The type of batch measurement is selected here from the list of options:

- Tank loading/unloading;

Conventional tank loading batch measurement (see 9.1.7.1).

Pipeline product interface;
 Different kind of fluids flowing in the same pipeline each after other measured as batches (see 9.1.7.2).

Available only if batch start/stop method is "from communication interface". In case to Pipeline product interface batch type new data entry line appear:

• Product info

Entering into this entry line new data entry display appears where up to 16 different product type and the corresponding density at base conditions shall be entered. See also in 9.2.2.1.1.5. Liquids.

The name of the stream entered in 9.2.2.1. will be displayed on the batch report as station name. To display the results of the batch measurements see 9.1.7.

Meter serial test

Flow meter serial test measurement can be enabled or disabled here. The option is selected from the list:: o disabled;

No flow meter serial test measurement performed.

o enabled;

Flow meter serial test measurement is enabled.

Warning message appears:

Proceeding will reset all totals and parameters of stream 8. Proceed? Selecting yes two new lines appear.

- Shadow stream 8 In the non custody transfer flow computer the measured values and totals are displayed in stream 8.
- Stream

The option is selected from the list:

custody transfer stream (slave);

The stream being set up will perform the custody transfer measurement during the serial test. It will operate in normal way. In the data exchange between the two flow computers taking part in the flow meter serial test this flow computer will be the slave device.

 non custody transfer stream (master);
 The stream being set up will perform non custody transfer measurement during the serial test. It will display and totalize the flow in stream 8 instead of the stream being configured for the particular meter run. In the data exchange between the two flow computers taking part in the flow meter serial test this flow computer will

be the master device.

See details of the meter serial test measurements in 9.1.8.

Transmitter calibration

Calibration of the transmitters can be enabled or disabled here. When calibration is enabled for a certain transmitter keypad value shall be entered for the parameter being measured by that transmitter. In this case the flow calculation will be performed with the keypad value of the parameter. The measured value of the input signal is still displayed in the Flow / Plant I/O / IO Board x menu allowing the calibration of the transmitter without interrupting the flow measurement. NOTE: the transmitter calibration shall be disabled after finishing the transmitter calibration to recover the normal operation of the flowcomputer.

The option is selected from the list::

- o no;
 - transmitters operate in normal way.
- o yes;

transmitters are being calibrated. If the yes option is selected 4 new menu item appears allowing selection of the transmitters one by one, namely:

- Flow meter
 - o no;

flow meter operates in normal way.

- o yes;
- flow meter is being calibrated.
- Keypad value

keypad value to be used in the calculation during the transmitter calibration shall be entered.

- Pressure
 - o no;
 - pressure transmitter operates in normal way.
 - o yes;
 - pressure transmitter is being calibrated.
 - Keypad value
 - keypad value to be used in the calculation during the transmitter calibration shall be entered.
- Temperature 1
 - o no;
 - temperature 1 transmitter operates in normal way.
 - o yes;
 - temperature 1 transmitter is being calibrated.
 - Keypad value
 - keypad value to be used in the calculation during the transmitter calibration shall be entered.
- Temperature 2
 - o no;

temperature 2 transmitter operates in normal way.

- o yes;
 - temperature 2 transmitter is being calibrated.
 - Keypad value
 - keypad value to be used in the calculation during the transmitter calibration shall be entered.

9.2.2.1.3.4 Stream setup – fluid: crude oil, flow meter: liquid turbine meter

ters Streams	Physical stream	Stream 1.	Stream setup
01.Str. ASZK1		01.Str. ASZK1	
Stream setup		Stream setup	
Fluid selected	crude oil	Bad pulse thr	eshold 5000
Units	Total Flowrad	e Good pulse th	reshold 5000
Volume	m ³ m ³ /h	Cut off	0.1
Mass	t t/h	Eventing	no
Energy	GJ GJ/h	Pres. at flow	meter measured
Flow meter liq.	turbine meter		1 IO 2
Flow signal mode	measured	Temp. at flow	meter measured
	3 IO 1 ch.		2 10 2
Check signal	measured	Pres. at dens	.meter measured
-	3 IO 2 ch.		1 IO 1
Signal ratio	1	Temp. at dens	.meter measured
Bad pulse threshold	5000		2 IO 1
Menu		Menu	
01.Str. ASZK1		01.Str. ASZK1	
Stream setup		Stream setup	
Temp. at dens.meter	measured	'A' dens.meter	sign. measured
Temp: at achaimeter	2 IO 1 ch.		3 10 3
No. of dens. meters	2 10 1 0.1.	Dens.met.'A' b	ody T measured
Primary dens. meter	Â		2 I0 1
Discrepancy	0.5 kg/	³ 'B' dens.meter	
'A' dens.meter sign.	measured		3 IO 4
	3 I0 3 ch.	Dens.met.'B' b	
Dens.met.'A' body T	measured	Jonormoor D N	2 IO 2
Johormovi in Doug I	2 I0 1 ch.	Stream disabli	
'B' dens.meter sign.	measured	Batch	ng nc
2 contractor orgin	3 I0 4 ch.	Meter serial f	
Dens.met.'B' body T	measured	Transm. calibr	

Figure 9-97 Stream setup data page, fluid: crude oil, flow meter: liquid turbine

In this example it is assumed that the flow is measured by turbine meter with dual pulse train. The density is measured by two density transmitters at the header pipe.

The pressure of the fluid is measured at the flow meter and at the density meter.

The temperature of the fluid is measured at the flow meter and at the density meter.

The data fields on the data page are as follows:

- Fluid selected; Not editable here, fixed to the fluid selected in the Fluid menu
- Units;

Route in the menu tree:

See the available units for volume, mass and energy in Table 9-11.

- Flow meter; Not editable here, fixed to the flow meter selected in the Flow meter menu
- Flow signal mode; The mode selected from the list

o measured;

It is assumed that the flow signal is measured on pulse or analog input channel. The channel number entered here.

IO *n* Ch *m*;

n – number of I/O board

- m number of channel on the I/O board
- o modb. sign. (measured at Modbus channel);

It is assumed that the flow signal is received on Modbus channel. In this case new data entry field appear to enter the flow signal channel parameters.

- Channel *n*;
 - *n* number of Modbus channel;
- o keypad;

Keypad flow signal (volume flow rate at line conditions) can be entered here. It serves for testing the flow calculation only.

NOTE

If flow signal is set to keypad the flow rate will be displayed but no totalization will be done.

• Check signal mode;

The mode selected from the list

- o none;
- o measured;

It is assumed that dual pulse train is received from the turbine meter to check the pulse integrity.

The channel number of the check signal entered here.

IO *n* Ch *m*;

n – number of I/O board

m – number of channel on the I/O board

- Signal ratio (Main to check signal ratio);
- Bad pulse threshold;

If the difference in the number of pulses received on the main and check pulse input channel higher then this limit then pulse input alarm is raised.

• Good pulse threshold;

If in the pulse input alarm active state the number of pulses received after the pulse input alarm appeared higher then this limit then the pulse input alarm is cleared. However the alarm is logged in the alarm log file.

If the good pulse threshold set to 0 then no automatic clearing of the pulse alarm is done.

- Cut off (Low flow cut off); Entered in % of the high range of the flow signal input channel.
 If the measured flow is below the low flow cut off limit then the flow is assumed to be zero.
- Eventing low flow cut off;

It is operator selectable if the low flow cut off will generate entry in the event log or not.

- o yes;
- o no;
- Pres. at flow meter (Pressure at flow meter mode);

The mode selected from the list

o measured;

It is assumed that pressure is measured on analog input channel.

The channel number should be entered here.

IO n Ch m

- n number of I/O board
- m number of channel on the I/O board
- o modb. sign. (measured at Modbus channel);

It is assumed that pressure signal is received on Modbus channel. The channel number should be entered here.

Channel n;

n – number of Modbus channel;

o keypad;

Keypad pressure can be entered here if pressure signal is not available.

- Temp. at flow meter (Temperature at flow meter mode);
 - The mode selected from the list
 - o measured;

It is assumed that temperature is measured on input channel.

The channel number should be entered here.

IO n Ch m

- n number of I/O board
- m number of channel on the I/O board

o modb. sign. (measured at Modbus channel);

It is assumed that temperature signal is received on Modbus channel.

The channel number should be entered here.

- Channel *n*;

n – number of Modbus channel;

o keypad;

Keypad temperature can be entered here if temperature signal is not available.

Pres. at dens. meter (Pressure at density meter mode);

The mode selected from the list

o measured;

It is assumed that pressure is measured on analog input channel. The channel number should be entered here.

- IO n Ch m
- n number of I/O board

m – number of channel on the I/O board

o modb. sign. (measured at Modbus channel);

It is assumed that pressure signal is received on Modbus channel. The channel number should be entered here.

- Channel *n*;
 - *n* number of Modbus channel;
- o keypad;

Keypad pressure can be entered here if pressure signal is not available.

• Temp at dens. meter (Temperature at density meter mode);

The mode selected from the list

o measured;

It is assumed that temperature is measured on input channel. The channel number should be entered here.

- IO n Ch m
- n number of I/O board
- m number of channel on the I/O board
- o modb. sign. (measured at Modbus channel);
 - It is assumed that temperature signal is received on Modbus channel.
 - The channel number should be entered here.
 - Channel *n*;
 - n number of Modbus channel;
- o keypad;
 - Keypad temperature can be entered here if temperature signal is not available.
- No. of dens. meters (Number of density transmitters); Selected from the list
 - 1 (one);
 - o 2 (two);
 - The two densitometer are designated as A and B.
- Primary dens. meter (Primary density transmitter);
 - The density primarily used in the flow calculation selected from the list
 - o A;
 - о В;
 - o average;
- Discrepancy;

The maximum discrepancy between the two densitometer readings entered. Required only if two densitometers selected.

• 'A' dens. meter sign. ("A" density transmitter signal mode);

The mode selected from the list

o measured;

It is assumed that density is measured on input channel. The channel number should be entered here.

- IO *n* Ch *m*
- n number of I/O board
- m number of channel on the I/O board
- o modb. sign. (measured at Modbus channel);

It is assumed that density signal is received on Modbus channel.

- The channel number should be entered here.
- Channel n;
 - *n* number of Modbus channel;
- o keypad;

Keypad density can be entered here if density signal is not available.Dens.met."A" body T ("A" density transmitter body temperature);

The mode selected from the list

o measured;

It is assumed that temperature is measured on input channel.

The channel number should be entered here.

- IO n Ch m
 - n number of I/O board
 - m number of channel on the I/O board

o modb. sign. (measured at Modbus channel);

It is assumed that temperature signal is received on Modbus channel. The channel number should be entered here.

- Channel n;
 - n number of Modbus channel;
- o keypad;
 - Keypad temperature can be entered here if temperature signal is not available.

'B' dens. meter sign. ("B" density transmitter signal mode);

The mode selected from the list

o measured;

It is assumed that density is measured on input channel.

The channel number should be entered here.

- IO *n* Ch *m*
 - *n* number of I/O board
 - m number of channel on the I/O board
- o modb. sign. (measured at Modbus channel);

It is assumed that density signal is received on Modbus channel.

The channel number should be entered here.

- Channel *n*;
 - *n* number of Modbus channel;
- o keypad;

Keypad density can be entered here if density signal is not available.

- Dens.met.'B' body T ('B' density transmitter body temperature); The mode selected from the list
 - o measured;

It is assumed that temperature is measured on input channel. The channel number should be entered here.

- IO n Ch m
 - n number of I/O board
 - m number of channel on the I/O board
- o modb. sign. (measured at Modbus channel);

It is assumed that temperature signal is received on Modbus channel. The channel number should be entered here.

- Channel *n*;
 - *n* number of Modbus channel;
- o keypad;

Keypad temperature can be entered here if temperature signal is not available.

Stream disabling;

It is possible to disable the operation of the stream depending on different parameters. The option is selected from the list:

o no;

Stream never disabled.

o input signal;

Any I/O channel signal can be selected. One lower limit and one upper limit can be selected to disable the stream. The lower limit is selected from lsc, lo, lolo or none. The upper limit is selected from hsc, hi, hihi or none

The channel number and the limit causing the stream disabled should be entered here.

- IO n Ch m;
 - *n* number of I/O board
 - m number of channel on the I/O board
- Limit to disable;

Lower limit

- 10 (low alarm limit of the I/O channel);
- lolo (low-low alarm limit of the I/O channel);
- lsc (low scale of the I/O channel);
- (no lower limit will disable the stream);

Upper limit

- hi (high alarm limit of the I/O channel);
- hihi (high-high alarm limit of the I/O channel);
- hsc (high scale of the I/O channel);
 - (no upper limit will disable the stream);
- o modbus signal;

Any Modbus channel signal can be selected. One lower limit and one upper limit can be selected to disable the stream. The lower limit is selected from lsc, lo, lolo or none. The upper limit is selected from hsc, hi, hihi or none.

The channel number and the limit causing the stream disabled should be entered here.

- Channel n;
 - *n* number of Modbus channel;
 - Limit to disable;
 - Lower limit
 - 10 (low alarm limit of the Modbus channel);
 - lolo (low-low alarm limit of the Modbus channel);
 - lsc (low scale of the Modbus channel);
 - (no lower limit will disable the stream);

Upper limit

- hi (high alarm limit of the Modbus channel);
- hihi (high-high alarm limit of the Modbus channel);
- hsc (high scale of the Modbus channel);
 - (no upper limit will disable the stream);
- o from stream;
 - Any stream can be selected.

One lower limit and one upper limit can be selected to disable the stream. The lower limit is selected from lsc, lo, lolo or none.

The upper limit is selected from hsc, hi, hihi or none.

The stream number and the limit causing the stream disabled should be entered here.

- Stream n;

n – serial number of the stream from 1 to 12;

Limit to disable;

- Lower limit

- 10 (low alarm limit of the Stream n);

- lolo (low-low alarm limit of the Stream *n*);

- lsc (low scale of the Stream n);
- no lower limit will disable the stream);

- Upper limit

- hi (high alarm limit of the Stream *n*);
- hihi (high-high alarm limit of the Stream n;
- hsc (high scale of the Stream n);
 - - (no upper limit will disable the stream);

The values of the upper and lower limits are set in the Limits menu of the Stream *n* being the stream disabling the current stream. The type of flow rate (volume at line or at base conditions, mass or energy flow rate) is selected also in the Limits menu of the Stream *n*. See 9.2.2.1.5.

Batch;

Batch measurement is enabled or disabled here. The option is selected from the list:

- o no;
 - No batch measurement performed.
- o yes;

Batch measurement is enabled. New data entry lines appear where the parameters of the batch measurement shall be enter.

Batch start/stop

The batch start/stop method is selected here from the list of options:

- from communication interface;

The batch measurement starts and stops by writing certain Modbus registers. The mapping of the start/stop Modbus registers and also the registers where the measured data can be read from see in 10.5.2.

- start key/required quantity;

The batch measurement starts with pulse (pulse length min. 1 s) applied to the appropriate digital input.

The batch measurements stops when the required quantity (mass or volume) passed the meter run. The batch measurement can be stopped in case of emergency applying pulse (pulse length min. 1 s) to the appropriate digital input.

In case of this start/stop method new data entry lines appear as follows:

Required quantity

Selected from the list:

- volume (required quantity is entered in volume units at base conditions);
- mass (required quantity is entered in mass units);
- Batch quantity

Numeric entry field to enter the required batch quantity.

- Batch start input (digital input channel to start batch measurement)
 - IO n Ch m
 - *n* number of I/O board
 - m number of channel on the I/O board
- Batch stop input (digital input channel to stop batch measurement in case of emergency)
 - IO *n* Ch *m*

- n number of I/O board
- m number of channel on the I/O board
- Batch control input (digital output channel set to active state during the batch measurement)
 - IO n Ch m
 - *n* number of I/O board
 - m number of channel on the I/O board
- Batch type

The type of batch measurement is selected here from the list of options:

- Tank loading/unloading;
 - Conventional tank loading batch measurement (see 9.1.7.1).
- Pipeline product interface;
 Different kind of fluids flowing in the same pipeline each after other measured as batches (see 9.1.7.2).

Available only if batch start/stop method is "from communication interface". In case to Pipeline product interface batch type new data entry line appear:

• Product info

Entering into this entry line new data entry display appears where up to 16 different product type and the corresponding density at base conditions shall be entered. See also in 9.2.2.1.1.5. Liquids.

The name of the stream entered in 9.2.2.1. will be displayed on the batch report as station name. To display the results of the batch measurements see 9.1.7.

Meter serial test

Flow meter serial test measurement can be enabled or disabled here. The option is selected from the list::

o disabled;

No flow meter serial test measurement performed.

o enabled;

Flow meter serial test measurement is enabled.

Warning message appears:

Proceeding will reset all totals and parameters of stream 8. Proceed?

Selecting yes two new lines appear.

- Shadow stream 8 In the non custody transfer flow computer the measured values and totals are displayed in stream 8.
- Stream

The option is selected from the list:

custody transfer stream (slave);

The stream being set up will perform the custody transfer measurement during the serial test. It will operate in normal way. In the data exchange between the two flow computers taking part in the flow meter serial test this flow computer will be the slave device.

non custody transfer stream (master);

The stream being set up will perform non custody transfer measurement during the serial test. It will display and totalize the flow in stream 8 instead of the stream being configured for the particular meter run. In the data exchange between the two flow computers taking part in the flow meter serial test this flow computer will be the master device.

See details of the meter serial test measurements in 9.1.8.

• Transmitter calibration

Calibration of the transmitters can be enabled or disabled here. When calibration is enabled for a certain transmitter keypad value shall be entered for the parameter being measured by that transmitter. In this case the flow calculation will be performed with the keypad value of the parameter. The measured value of the input signal is still displayed in the Flow / Plant I/O / IO Board x menu allowing the calibration of the transmitter without interrupting the flow measurement. NOTE: the transmitter calibration shall be disabled after finishing the transmitter calibration to recover the normal operation of the flowcomputer.

The option is selected from the list::

o no;

transmitters operate in normal way.

o yes;

transmitters are being calibrated. If the yes option is selected 4 new menu item appears allowing selection of the transmitters one by one, namely:

- Flow meter
 - o no;

flow meter operates in normal way.

o yes;

flow meter is being calibrated.

• Keypad value

keypad value to be used in the calculation during the transmitter calibration shall be entered.

- Pressure
 - o no;

pressure transmitter operates in normal way.

o yes;

pressure transmitter is being calibrated.

• Keypad value

keypad value to be used in the calculation during the transmitter calibration shall be entered.

- Temperature 1
 - o no;

temperature 1 transmitter operates in normal way.

- o yes;
 - temperature 1 transmitter is being calibrated.
 - Keypad value

keypad value to be used in the calculation during the transmitter calibration shall be entered.

• Temperature 2

- o no;
 - temperature 2 transmitter operates in normal way.
- o yes;
 - temperature 2 transmitter is being calibrated.
 - Keypad value
 - keypad value to be used in the calculation during the transmitter calibration shall be entered.

9.2.2.1.3.5 Stream setup example – fluid: crude oil, flow meter: mass flow meter

Route in the menu tree:			
Parameters Streams	Physical stream	Stream 1. Stream	n set up
04.Str. CR.OIL-MASS		04.Str. CR.OIL-MASSF	LOU METER
Stream setup	FLOW HELER	Stream setup	
Fluid selected	crude oil	Cut off	0.1 ×
Units	Total Flowrate	Eventing	no
Volume	m³ m³∕h	Pres. at flow meter	measured
Mass	kg kg∕h		1 IO 3 ch.
Energy	GJ GJ∕h	Temp. at flow meter	measured
Flow meter	mass flow meter		1 IO 5 ch.
Flow signal mode	measured	Density signal	measured
	2 IO 1 ch.		2 IO 3 ch.
Check signal	no	Stream disabling	no
Cut off	0.1 ×	Batch	no
Eventing	no	Meter serial test	disabled
Pres. at flow meter	measured	<u>T</u> ransm. <u>cal</u> ibration	n <u>o</u>
Save		Save Change	

Figure 9-98 Stream setup data page, fluid: crude oil, flow meter: mass flow meter

In this example it is assumed that the flow is measured by mass flow meter.

The density is measured also by the mass flow meter.

The pressure and the temperature of the fluid are measured at the flow meter.

The data fields on the data page are as follows:

• Fluid selected;

Not editable here, fixed to the fluid selected in the Fluid menu

• Units;

See the available units for volume, mass and energy in Table 9-11.

• Flow meter;

Not editable here, fixed to the flow meter selected in the Flow meter menu;

• Flow signal mode;

The mode selected from the list

o measured;

It is assumed that the flow signal is measured on pulse or analog input channel. The channel number entered here.

IO *n* Ch *m*;

n – number of I/O board

m – number of channel on the I/O board

o modb. sign. (measured at Modbus channel);

It is assumed that the flow signal is received on Modbus channel. In this case new data entry field appear to enter the flow signal channel parameters.

- Channel n;
 - *n* number of Modbus channel;

o keypad;

Keypad flow signal (mass flow rate) can be entered here. It serves for testing the flow calculation only.

NOTE

If flow signal is set to keypad the flow rate will be displayed but no totalization will be done.

- Cut off (Low flow cut off); Entered in % of the high range of the flow signal input channel.
 If the measured flow is below the low flow cut off limit then the flow is assumed to be zero.
- Eventing low flow cut off;
 It is operator selectable if the low flow cut off will generate entry in the event log or not.
 - o yes;
 - o no;
- Pres. at flow meter (Pressure at flow meter mode);

The mode selected from the list

o measured;

It is assumed that pressure is measured on analog input channel.

The channel number should be entered here.

- IO n Ch m
- n number of I/O board
- m number of channel on the I/O board
- o modb. sign. (measured at Modbus channel);
- It is assumed that pressure signal is received on Modbus channel.

The channel number should be entered here.

- Channel n;
- *n* number of Modbus channel;
- o keypad;
 - Keypad pressure can be entered here if pressure signal is not available.
- Temp. at flow meter (Temperature at flow meter mode);
- The mode selected from the list
 - o measured;

It is assumed that temperature is measured on input channel.

The channel number should be entered here.

- IO n Ch m
- *n* number of I/O board
- m number of channel on the I/O board

o modb. sign. (measured at Modbus channel);

It is assumed that temperature signal is received on Modbus channel.

The channel number should be entered here.

- Channel n;
- *n* number of Modbus channel;
- o keypad;

Keypad temperature can be entered here if temperature signal is not available.

• Density signal;

The mode selected from the list

o measured;

It is assumed that density is measured on input channel.

The channel number should be entered here.

IO n Ch m

- n number of I/O board
- m number of channel on the I/O board
- o modb. sign. (measured at Modbus channel);

It is assumed that density signal is received on Modbus channel.

The channel number should be entered here.

- Channel n;
- *n* number of Modbus channel;
- o keypad;

Keypad density can be entered here if density signal is not available.

• Stream disabling;

It is possible to disable the operation of the stream depending on different parameters. The option is selected from the list:

o no;

- Stream never disabled.
- o input signal;

Any I/O channel signal can be selected. One lower limit and one upper limit can be selected to disable the stream. The lower limit is selected from lsc, lo, lolo or none.

The upper limit is selected from hsc, hi, hihi or none

The channel number and the limit causing the stream disabled should be entered here.

- IO *n* Ch *m*;
 - n number of I/O board

m – number of channel on the I/O board

Limit to disable;

Lower limit

- 10 (low alarm limit of the I/O channel);
- lolo (low-low alarm limit of the I/O channel);
- lsc (low scale of the I/O channel);
- – (no lower limit will disable the stream);

Upper limit

- hi (high alarm limit of the I/O channel);
- hihi (high-high alarm limit of the I/O channel);
- hsc (high scale of the I/O channel);
 - (no upper limit will disable the stream);
- o modbus signal;

Any Modbus channel signal can be selected. One lower limit and one upper limit can be selected to disable the stream. The lower limit is selected from lsc, lo, lolo or none. The upper limit is selected from hsc, hi, hihi or none.

The channel number and the limit causing the stream disabled should be entered here.

- Channel *n*;
 - *n* number of Modbus channel;
- Limit to disable;
 - Lower limit
 - 10 (low alarm limit of the Modbus channel);

- lolo (low-low alarm limit of the Modbus channel);
- lsc (low scale of the Modbus channel);
- (no lower limit will disable the stream);

Upper limit

- hi (high alarm limit of the Modbus channel);
- hihi (high-high alarm limit of the Modbus channel);
- hsc (high scale of the Modbus channel);
 - (no upper limit will disable the stream);
- o from stream;
 - Any stream can be selected.

One lower limit and one upper limit can be selected to disable the stream. The lower limit is selected from lsc, lo, lolo or none.

The upper limit is selected from hsc, hi, hihi or none.

The stream number and the limit causing the stream disabled should be entered here.

- Stream n;
 - n serial number of the stream from 1 to 12;

Limit to disable;

- Lower limit
- -1_{\circ} (low alarm limit of the Stream *n*);
 - lolo (low-low alarm limit of the Stream n);
 - lsc (low scale of the Stream n);
 - no lower limit will disable the stream);

- Upper limit

- hi (high alarm limit of the Stream *n*);
- hihi (high-high alarm limit of the Stream *n*;
- hsc (high scale of the Stream n);
 - - (no upper limit will disable the stream);

The values of the upper and lower limits are set in the Limits menu of the Stream n being the stream disabling the current stream. The type of flow rate (volume at line or at base conditions, mass or energy flow rate) is selected also in the Limits menu of the Stream n. See 9.2.2.1.5.

Batch;

Batch measurement is enabled or disabled here. The option is selected from the list:

o no;

No batch measurement performed.

o yes;

Batch measurement is enabled. New data entry lines appear where the parameters of the batch measurement shall be enter.

Batch start/stop

The batch start/stop method is selected here from the list of options:

- from communication interface;

The batch measurement starts and stops by writing certain Modbus registers. The mapping of the start/stop Modbus registers and also the registers where the measured data can be read from see in 10.5.2.

- start key/required quantity;

The batch measurement starts with pulse (pulse length min. 1 s) applied to the appropriate digital input.

The batch measurements stops when the required quantity (mass or volume) passed the meter run. The batch measurement can be stopped in case of emergency applying pulse (pulse length min. 1 s) to the appropriate digital input.

In case of this start/stop method new data entry lines appear as follows:

- Required quantity Selected from the list:
 - volume (required quantity is entered in volume units at base conditions);
 - mass (required quantity is entered in mass units);
- Batch quantity

Numeric entry field to enter the required batch quantity.

- Batch start input (digital input channel to start batch measurement)
 - 10 *n* Ch *m*
 - n number of I/O board

m – number of channel on the I/O board

- Batch stop input (digital input channel to stop batch measurement in case of emergency)
 - IO n Ch m
 - n number of I/O board
 - m number of channel on the I/O board
- Batch control input (digital output channel set to active state during the batch measurement)
 - IO n
 - n number of I/O board
 - m number of channel on the I/O board

Ch m

• Batch type

The type of batch measurement is selected here from the list of options:

- Tank loading/unloading;

Conventional tank loading batch measurement (see 9.1.7.1).

- Pipeline product interface;

Different kind of fluids flowing in the same pipeline each after other measured as batches (see 9.1.7.2).

Available only if batch start/stop method is "from communication interface".

In case to Pipeline product interface batch type new data entry line appear:

Product info

Entering into this entry line new data entry display appears where up to 16 different product type and the corresponding density at base conditions shall be entered. See also in 9.2.2.1.1.5. Liquids.

The name of the stream entered in 9.2.2.1. will be displayed on the batch report as station name. To display the results of the batch measurements see 9.1.7.

• Meter serial test

Flow meter serial test measurement can be enabled or disabled here. The option is selected from the list::

o disabled;

No flow meter serial test measurement performed.

o enabled;

Flow meter serial test measurement is enabled. Warning message appears: Proceeding will reset all totals and parameters of stream 8. Proceed?

Selecting yes two new lines appear.

- Shadow stream 8 In the non custody transfer flow computer the measured values and totals are displayed in stream 8.
- Stream

The option is selected from the list:

custody transfer stream (slave);

The stream being set up will perform the custody transfer measurement during the serial test. It will operate in normal way. In the data exchange between the two flow computers taking part in the flow meter serial test this flow computer will be the slave device.

non custody transfer stream (master);

The stream being set up will perform non custody transfer measurement during the serial test. It will display and totalize the flow in stream 8 instead of the stream being configured for the particular meter run. In the data exchange between the two flow computers taking part in the flow meter serial test this flow computer will be the master device.

See details of the meter serial test measurements in 9.1.8.

• Transmitter calibration

Calibration of the transmitters can be enabled or disabled here. When calibration is enabled for a certain transmitter keypad value shall be entered for the parameter being measured by that transmitter. In this case the flow calculation will be performed with the keypad value of the parameter. The measured value of the input signal is still displayed in the Flow / Plant I/O / IO Board x menu allowing the calibration of the transmitter without interrupting the flow measurement. NOTE: the transmitter calibration shall be disabled after finishing the transmitter calibration to recover the normal operation of the flowcomputer.

The option is selected from the list::

o no;

transmitters operate in normal way.

o yes;

transmitters are being calibrated. If the yes option is selected 4 new menu item appears allowing selection of the transmitters one by one, namely:

- Flow meter
 - o no;

flow meter operates in normal way.

- o yes;
- flow meter is being calibrated.
- Keypad value

keypad value to be used in the calculation during the transmitter calibration shall be entered.

- Pressure
 - o no;
 - pressure transmitter operates in normal way.
 - o yes;
 - pressure transmitter is being calibrated.
 - Keypad value
 - keypad value to be used in the calculation during the transmitter calibration shall be entered.
- Temperature 1
 - o no;
 - temperature 1 transmitter operates in normal way.
 - o yes;
 - temperature 1 transmitter is being calibrated.
 - Keypad value
 - keypad value to be used in the calculation during the transmitter calibration shall be entered.
- Temperature 2
 - o no;
 - temperature 2 transmitter operates in normal way.
 - o yes;
 - temperature 2 transmitter is being calibrated.
 - Keypad value
 - keypad value to be used in the calculation during the transmitter calibration shall be entered.

neters Streams	Physical stream	Stream 1.	Stream set up
	07.Str. STR7		
	Stream setup		
	Fluid selected	other	
	Flow meter	other	
	Flow signal mode	measured	
		1 IO 3 ch.	
	Cut off	0 ×	
	Eventing	no	
	Units	Total Flowrate	
		MVAN MVA	
	Stream disabling	no	
	Save		

9.2.2.1.3.6 Stream setup example – fluid: other, flow meter: other (electrical power measurement)

Figure 9-99 Stream setup data page, fluid: other, flow meter: other (electrical power measurement)

In this example it is assumed that electrical power measurement is required. The flow signal is proportional to the electrical power. In fact, no flow calculation but only the totalization of the flow signal is required.

The data fields on the data page are as follows:

- Fluid selected; Not editable here, fixed to the fluid selected in the Fluid menu
- Flow meter; Not editable here, fixed to the flow meter selected in the Flow meter menu
- Units (Total Flowrate); Not editable here. The unit of measurement for the Total and Flow rate is taken from the flow signal
 - o MVAh MVA; (in the example)
- Flow signal mode;

The mode selected from the list

o measured;

It is assumed that the flow signal is measured on pulse or analogue input channel.

The channel number entered here.

IO n Ch m;

- n number of I/O board
- m number of channel on the I/O board

o modb. sign. (measured at Modbus channel);

It is assumed that the flow signal is received on Modbus channel. In this case new data entry field appear to enter the flow signal channel parameters.

Channel n;

n – number of Modbus channel;

o keypad;

Keypad flow signal can be entered here. It serves for testing the flow calculation only. NOTE

If flow signal is set to keypad the flow rate will be displayed but no totalization will be done.

- Cut off (Low flow cut off): ٠ Entered in % of the high range of the flow signal input channel. If the measured flow is below the low flow cut off limit then the flow is assumed to be zero.

 - Eventing low flow cut off;

It is operator selectable if the low flow cut off will generate entry in the event log or not.

- o yes;
- o no;
- Stream disabling;

It is possible to disable the operation of the stream depending on different parameters. The option is selected from the list:

- o no;
 - Stream never disabled.
- o input signal;

Any I/O channel signal can be selected. One lower limit and one upper limit can be selected to disable the stream. The lower limit is selected from lsc, lo, lolo or none.

The upper limit is selected from hsc, hi, hihi or none

The channel number and the limit causing the stream disabled should be entered here.

- 10 nCh *m*:
 - n number of I/O board

m – number of channel on the I/O board

Limit to disable;

Lower limit

- (low alarm limit of the I/O channel); lo
- lolo (low-low alarm limit of the I/O channel);
- (low scale of the I/O channel); lsc
- (no lower limit will disable the stream); _

Upper limit

- hi (high alarm limit of the I/O channel);
- hihi (high-high alarm limit of the I/O channel);
- (high scale of the I/O channel); hsc
 - (no upper limit will disable the stream); _
- modbus signal; 0

Any Modbus channel signal can be selected. One lower limit and one upper limit can be selected to disable the stream. The lower limit is selected from lsc, lo, lolo or none.

The upper limit is selected from hsc, hi, hihi or none.

The channel number and the limit causing the stream disabled should be entered here.

Channel n:

n – number of Modbus channel;

- Limit to disable;

Lower limit

- 10 (low alarm limit of the Modbus channel);
- lolo (low-low alarm limit of the Modbus channel);
- lsc (low scale of the Modbus channel);
 - (no lower limit will disable the stream);

Upper limit

- hi (high alarm limit of the Modbus channel);
- hihi (high-high alarm limit of the Modbus channel);
- hsc (high scale of the Modbus channel);
- (no upper limit will disable the stream);
- o from stream;

Any stream can be selected.

One lower limit and one upper limit can be selected to disable the stream. The lower limit is selected from lsc, lo, lolo or none.

The upper limit is selected from hsc, hi, hihi or none.

The stream number and the limit causing the stream disabled should be entered here.

- Stream n;
 - n serial number of the stream from 1 to 12;

Limit to disable;

- Lower limit

- 10 (low alarm limit of the Stream n);
 - lolo (low-low alarm limit of the Stream *n*);
 - lsc (low scale of the Stream *n*);
 - no lower limit will disable the stream);

- Upper limit

- hi (high alarm limit of the Stream *n*);
- hihi (high-high alarm limit of the Stream n;
- hsc (high scale of the Stream n);
 - - (no upper limit will disable the stream);

The values of the upper and lower limits are set in the Limits menu of the Stream n being the stream disabling the current stream. The type of flow rate (volume at line or at base conditions, mass or energy flow rate) is selected also in the Limits menu of the Stream n. See 9.2.2.1.5.

9.2.2.1.4 Premium limits

UNIFLOW-200 is prepared to totalize flow in separate counters if the flow rate higher, then a preset limit. The limits for the flow rates are set on this data page.

The premium limit mode, i.e. if he premium flow is calculated on the instantaneous flow rate or on the hourly totals is set in the Premium limit mode setup menu (see section 9.2.2.3)

Function of the F keys on the Premium limits data pages

- select the next field for editing
- f select the previous field for editing

Change modify the selected data field

OK Confirm the selection

Save save the selected/entered data and returns to the parent menu.

Route in the menu tree:

arameters	Streams	Physical stream	Stream 1.	Premium limits
		01.Str. NGAS-OR Str. premium total Premium limit mode	s setup	
		Premium limits <u>CVOL flowrate</u> UVOL flowrate MASS flowrate ENERGY flowrate	12000 m 0 m 0 k 0 G	³∕h g∕h
		Save Change		-

Figure 9-100 Premium limits data page

The data fields on the data page are as follows:

- Premium limit mode; Not editable here, fixed to the mode selected in the Premium limit mode menu
- CVOL flowrate (volume flow rate at base conditions);
- UVOL flowrate (volume flow rate at line conditions);
- MASS flowrate (mass flow rate);
- ENGY flowrate (energy flow rate);

9.2.2.1.5 Limits

The low-low, lo, high. high-high limits can be set for the stream flow rate.

Function of the F keys on the Limits data pages

- select the next field for editing
- **企** select the previous field for editing

Change modify the selected data field

OK Confirm the selection

Save save the selected/entered data and returns to the parent menu.

Route in the menu tree:

Parameters	Streams	Physical stream	Stream 1.	Limits

01.Str. ASZK1					
Str. limits					
Flow selected		С	VOL	flowr	ate
LO_limit		_		0	m ³ /h
HI_limit				0	m ³ /h
LOLO_limit				0	m ³ /h
HIHI_limit				0	m ³ /h
Event at	lo	,hi	,lolo	,hihi	
Log	n	n	n	n	
Eventing	n	n	n	n	
Menu			Ŧ		

Figure 9-101 Limits data page

The data fields on the data page are as follows:

- Flow selected;
 - The type flow rate the limit check is applied to is selected here from the list
 - o CVOL flowrate (volume flow rate at base conditions);
 - O UVOL flowrate (volume flow rate at line conditions);
 - o MASS flowrate (mass flow rate);
 - o ENGY flowrate (energy flow rate);
 - o CO2 mass (CO2 emission flow rate);
- LO limit;
- HI limit;
- LOLO limit;
- HIHI limit;
- Event at

It can be selected here that which of the events shall initiate an entry in the event log file of the flow computer and which of the events shall generate event in the alarm system. The options are:

- lo (lo limit);
- hi (hi limit);

- o lolo (lolo limit);
- o hihi (hihi limit);
- Log
- Eventing

Selecting y (yes) in the "Log" line causes an entry shall be generated in the log file. Selecting n (no) in the Log line causes no entry is generated in the log file. In this case no y (yes) can be selected in the "Eventing" line.

If in the "Log" line y (yes) is selected, then in the "Eventing" line y (yes) or n (no) can be selected, i.e. the operator can decide if the event generates event in the alarm system or not.

9.2.2.2 Virtual stream setup

Virtual streams are designed to perform calculations on the flows determined in the physical streams. Such calculations include for example:

- summing flows of several metering streams to create station totals;
- calculate difference of two flows;

Streams

- calculate net efficiency of a boiler;
- calculate pure alcohol flow from the flow of alcohol-water mixture;

First the virtual stream should be selected on the data page shown below. Stream name can also be entered here.

Virtual streams

Route in the menu tree:

Parameters

Virtual str Stream No.		Main menu I	Stream setup Premium limits
Str. name Unit	STATION TOTAL metric units	Parameters Stream 	-Limits
		9. VSTR	
Menu	Chan		

Figure 9-102 Virtual stream selection data page

The system of units shall be selected on this page. Available selections are:

- o metric units;
- o imperial units;

Note:

If the "imperial units" is selected then the unit in all the physical streams flow rate of which processed in this virtual stream shall also be set as "imperial units". See 9.2.2.1.

If the "imperial units" is selected then the unit of volume, mass and energy are set automatically as follows:

- \circ volume/volume flow rate $\, {\tt MCF} \,$ $\, {\tt MCF/h}$;
- o mass/mass flow rate lb lb/h;
- o energy/energy flow rate MMBTU MMBTU/h;

and can not be altered.

After selecting the stream to be edited the virtual stream setup data page opens.

9.2.2.2.1 Virtual stream setup

Route in the menu tree:

Parameters Streams Virtual s	treams Stream 9.	Stream setup	
------------------------------	------------------	--------------	--

Function of the F keys on the Virtual stream setup data pages

♣ select the next field for editing

ŵ select the previous field for editing

Change modify the selected data field

OK Confirm the selection

Save save the selected/entered data and returns to the parent menu.

09.Vstr.STATION TOTAL		
Virtual stream setup		
Calc. variable	£	lowrate
Units	Total	Flowrate
Volume	m ³	m³∕h
Mass	kg	kg∕h
Energy	GJ	GJ∕h
Parameter selection		
volume mass en	ergy (02 mass
Definition		
M9 =M1+M2+M3		
Save Change		

Figure 9-103 Virtual stream setup data page

The data fields on the data page are as follows:

- Calc. variable (Calculated variable); Selected from the list
 - o flow rate;

The virtual stream calculates the flow rates (volume, mass or energy flow rate, depending on the selection in the Parameter selection data field below) according to the equation defined below. The unit of measurement can be selected for the different flow rates.

The volume is assumed to be the volume at base conditions.

The selected unit for volume must be the same unit as volume unit in the physical streams processed in virtual stream.

- volume unit (Total – Flowrate);

- mass unit (Total Flowrate);
 - kg kg/h;

- energy unit (Total – Flowrate);

- GJ GJ/h;
- MJ MJ/h;
- kWh kWh/h;
- MWh MWh/h;
- kVAh kVA;
- MVAh MVA;
- Parameter selection;

The parameter to be processed according to the equation defined below should be selected here from the list. One, two, three or all four parameters can be selected.

- volume;
- mass;
- energy;
- CO2 mass;
- o other param. (other parameter);

If the calculated parameter is not a flow rate but some other parameter then the name of the calculated parameter and its unit can be entered in the data fields below.

- Variable name;
- Unit selection;
 - %;
 - other;

Input param. selection (Input parameter selection);
 The parameter to be processed according to the equation defined below should be selected here from the list.

- volume;
- mass;
- energy;
- Operation (Operation to be performed);

The operation should be selected from the list.

- integration;

Integration (totalization) can be performed if flow rate is selected as the calculated variable.

averaging;

If the calculated variable is not a flow type parameter (for example concentration) then averaging will be performed on the parameter since the integration is not interpreted on the non flow type parameter.

Equation setup;

The equation describing the calculation to be performed should be entered.

Example 1

Summarize the flow rates from stream 1, 2 and 3

Virtual stream M9 will calculate the sum of flow rates and will totalize the sums into the stream 9 counters.

M9 = M1 + M2 + M3

Example 2

Calculate the pure alcohol quantity from the flow and from the alcohol concentration measured on stream 1. The pure alcohol in calculated in "100 liters per degree of alcohol" abbreviated as "hldeg". M9=M1*MV1/100

Rules to be followed in the equation setup:

- valid operations: + (summation), (subtraction), * (multiplication), / (division)
- equation must fit into one line
- first the multiplication and division performed then the summation and subtraction
- operations equal in rank are performed from left to right
- equation must starts with number or identifier, it must not be started with operation sign
- virtual stream with lower serial number can only be referenced

Valid identifiers in the equation setup:

- M1 ... M11 flow rate calculated in streams 1 to 11. Depending on the Parameter selection above it can be volume, mass and energy flow rate.
- MV1 ... MV8 concentration (measured or calculated) in streams 1 ... 8 in % (volume)
- MM1 ... MM8 concentration (measured or calculated) in streams 1 ... 8 in % (mass)

9.2.2.2.2 Virtual stream Premium limits

UNIFLOW-200 is prepared to totalize flow in separate counters if the flow rate higher, then a preset limit. The limits for the flow rates are set on this data page.

The premium limit mode, i.e. if he premium flow is calculated on the instantaneous flow rate or on the hourly totals is set in the Premium limit setup menu (see section 9.2.2.3)

	Route in the m	ienu tree:			
1	Parameters	Streams	Virtual streams	Stream 9.	Premium limits

Function of the F keys on the virtual stream premium limits data pages

- select the next field for editing
- **企** select the previous field for editing

Change modify the selected data field

OK Confirm the selection

Save save the selected/entered data and returns to the parent menu.

09.Vstr. STATION Vstr. premium total Premium limit mode	s setup	tal
Premium limits		
CVOL flowrate	28 000	m³∕h
Mass flowrate	0	kg∕h
Energy flowrate	0	GJ∕h
Save Change		

Figure 9-104 Virtual stream premium limits data page

The data fields on the data page are as follows:

- Premium limit mode;
 Not editable here, fixed to the mode selected in the Premium limit mode menu
- CVOL flowrate (volume flow rate at base conditions);
- MASS flowrate (mass flow rate);
- ENGY flowrate (energy flow rate);

9.2.2.2.3 Virtual stream Limits

LOLO, LO, HI. HIHI limits can be set for the virtual stream flow rate.

Route in the menu tree:

		AP () I		1.1.1.1.1
Parameters	Streams	Virtual streams	Stream 9.	Limits

Function of the F keys on the virtual stream limits data pages

- select the next field for editing
- む select the previous field for editing

Change modify the selected data field

OK Confirm the selection

Save save the selected/entered data and returns to the parent menu.

09.Vstr. STATION	тот	'AL			
Vstr. limits					
Flow selected		C	JOL 4	flowr	ate
LO_limit				0	m³/h
HI_limit				0	m³/h
LOLO_limit				0	m ³ /h
HIHI_limit				0	m ³ /h
Event at	lo,hi,lolo,hihi				
Log	n	n	n	n	
Eventing	n	n	n	n	
Menu	•		Ŧ		

Figure 9-105 Virtual stream limits data page

The data fields on the data page are as follows:

• Flow selected;

The type flow rate the limit check is applied to is selected here from the list

- o CVOL flowrate (volume flow rate at base conditions);
- o MASS flowrate (mass flow rate);
- o ENGY flowrate (energy flow rate);
- o CO2 mass (CO2 emission flow rate);
- LO limit;
- HI limit;
- LOLO limit;
- HIHI limit;
- Event at

It can be selected here that which of the events shall initiate an entry in the event log file of the flow computer and which of the events shall generate event in the alarm system. The options are:

◦ lo (lo limit);

- o hi (hi limit);
- o lolo (lolo limit);
- o hihi (hihi limit);
- Log
- Eventing

Selecting y (yes) in the "Log" line causes an entry shall be generated in the log file. Selecting n (no) in the Log line causes no entry is generated in the log file. In this case no y (yes) can be selected in the "Eventing" line.

If in the "Log" line y (yes) is selected, then in the "Eventing" line y (yes) or n (no) can be selected, i.e. the operator can decide if the event generates event in the alarm system or not.

9.2.2.3 Premium mode setup

Route in the menu tree:

Parameters Streams Premium mode setup	
---------------------------------------	--

Function of the F keys on the premium mode setup data pages

- select the next field for editing
- む select the previous field for editing

Change modify the selected data field

OK Confirm the selection

Save save the selected/entered data and returns to the parent menu.

Streams Premium	billing mode	hourly	total
Save	Change		

Figure 9-106 Premium mode setup data page

The mode for premium flow calculation should be setup.

The premium mode selected here is valid for all streams. No separate mode for separate streams can be selected.

The data fields on the data page are as follows:

• Premium limit mode;

Selected from the list

o hourly total;

Premium limits are evaluated at the end of each hour. If the hourly quantity (volume, mass and energy) exceeds the premium limit then the quantity above the limit is added to separate premium total counter.

The whole total (including the premium part) is totalized in the cumulative and periodic totals as well.

- o flow rate;
 - hysteresis;
 - timeout

The instantaneous flow rate (volume, mass and energy) is permanently compared to the premium limit. If the flow rate exceeds the premium limit + hysteresis and it exceeds longer then the timeout time, then the flow rate exceeding the premium limit is totalized into separate premium counter. The totalization into the premium counters stops when the flow rate decreases below the premium limit.

Exceeding the premium limit generates an entry in the event log.

The whole total (including the premium part) is totalized in the cumulative and periodic totals as well.

9.2.2.4 Fault mode setup

Route in the menu tree:

Parameters Streams Fault mode setup

Function of the F keys on the fault mode setup data pages

select the next field for editing

む select the previous field for editing

Change modify the selected data field

OK Confirm the selection

Save save the selected/entered data and returns to the parent menu.

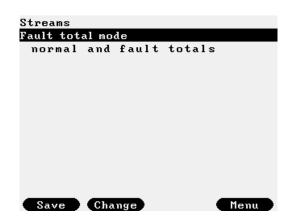


Figure 9-107 Fault mode setup data page

The mode for fault total calculation should be setup.

The fault mode selected here is valid for all streams. No separate mode for separate streams can be selected.

The data fields on the data page are as follows:

- Fault total mode; Selected from the list
 - o normal and fault totals;
 - In fault condition the totals are totalized in normal and fault totals.
 - o fault totals only;

In fault condition the totals are totalized in fault totals only.

The stream considered to be in fault condition if for example:

- input signal fails and the default value of the signal is used in the calculation;
- the difference in the two pulse trains in case of turbine meter exceeds certain limit;
- the beta ratio for the orifice meter is outside the limit described in the standard.

Virtual stream is considered to be in fault condition if any of the streams the data used in the virtual stream calculation from is in fault condition.

See the full list of fault conditions in section 9.3.

9.2.2.5 Barometric pressure

Route in the menu tree:

Parameters Streams barometric pressure

Function of the F keys on the barometric pressure data pages

select the next field for editing

む select the previous field for editing

Change modify the selected data field

OK Confirm the selection

Save save the selected/entered data and returns to the parent menu.

Stream: Baromet keypad	tric press.	ke	eypad 1	bar
Save	Change			

Figure 9-108 Barometric pressure data page

In volume at base conditions flow calculation (e.g. in PTZ calculation) the absolute pressure is required. If the transmitter measuring the pressure is gauge pressure transmitter, then UNIFLOW-200 determines the absolute pressure as sum of the measured gauge pressure plus the barometric pressure. It is assumed that the barometric pressure is common for all streams.

The mode for the barometric pressure should be setup here.

The mode selected from the list

o measured;

It is assumed that barometric pressure is measured on analog input channel.

The channel number should be entered here.

- IO *n* Ch *m*

n – number of I/O board

m – number of channel on the I/O board

o modb. sign. (measured at Modbus channel);

It is assumed that barometric pressure signal is received on Modbus channel.

The channel number should be entered here.

- Channel n;

n – number of Modbus channel;

o keypad;

Keypad barometric pressure can be entered here if barometric pressure signal is not available.

9.2.2.6 Averaging

Route in the menu tree:

Parameters General data Averaging setup

Function of the F keys on the Averaging setup data pagesChange modify the selected data fieldOK Confirm the selectionSave save the selected/entered data and returns to the parent menu

Menu returns to the parent menu

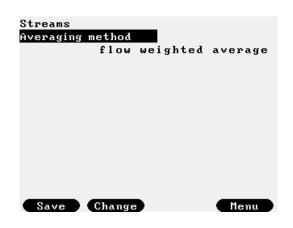


Figure 9-109 Averaging setup data page

The data fields on the data page are as follows:

- Averaging method;
 - o arithmetic average;
 - o flow weighted average;

In case of arithmetic averaging the value of the parameter to be averaged measured in each calculation cycle will be averaged.

In case of flow weighted averaging the value of the parameter to be averaged measured in each calculation cycle will be weighted with the volume at base condition (CVOL) measured in that cycle before the average is calculated.

NOTE

The flow weighted average of a parameter is zero in no flow condition even if the parameter itself is different from zero.

Averages are calculated for each time period defined in the flow computer, i.e. hourly, shift, daily, multiday and monthly averages are calculated.

9.2.3 General data

9.2.3.1 Date and time

Route in the m	nenu tree:				
Parameters	General data	Date and t	ime		
		Date and t	ime setup		
			M	11 M4-	_
		Year	Month Day	Hour Min	1.
		[2010]	-[11]-[14]	[11]:[37]	1
		Save	Change		

Figure 9-110 Date and time data page

The year, month, day, hour, minute of the real time clock is set here.

9.2.3.2 Timezone

Route in the m	ienu tree:		
Parameters	General data	Timezone	

Daylight saving time	
Daylight saving a	utomatic
New timezone?	no
Continent or ocean	Europe
Country Bri	tain (UK)
Region	London
2011 03.27 00:59:59 -> 03.27	02:00:00
2011 10.30 01:59:59 -> 10.30	01:00:00
2012 03.25 00:59:59 -> 03.25	02:00:00
2012 10.28 01:59:59 -> 10.28	01:00:00
2013 03.31 00:59:59 -> 03.31	02:00:00
2013 10.27 01:59:59 -> 10.27	01:00:00
2014 03.30 00:59:59 -> 03.30	02:00:00
2014 10.26 01:59:59 -> 10.26	01:00:00
Save Change 🗸	

Figure 9-111 Time zone data page

The daylight saving time (DST) rules can be set in this menu item.

The data fields on the data page are as follows:

- Daylight saving;
 - o no;

No adjustment of the internal clock will be applied to follow the daylight saving time clock adjustment.

o automatic;

Internal clock will adjusted to follow the daylight saving time clock adjustment automatically.

If ${\tt automatic}$ is selected then new menu items appears as follows.

- New timezone;
 - o no;

Rules of the default location (Europe, Britain (UK), London) will be applied.

o yes

New location can be selected corresponding to the time zone of the location of Uniflow-200.

Continent or ocean

- o Europe;
- o Indian Ocean;
- o Pacific Ocean;
- o Africa;
- o America;
- o Antarctica;
- o Arctic Ocean;
- o Asia;
- o Atlantic Ocean;
- o Australia;
- Country

The local country on the selected continent can be selected here from the list

Region

The local region inside the country can be selected here from the list.

9.2.3.3 Periods setting

The length of the time period for which the totalization is done are set here.

Route in the menu tree:

Parameters General data Time periods

Function of the F keys on the Time periods data pages

- select the next field for editing
- む select the previous field for editing
- Change modify the selected data field
- **OK** Confirm the selection

Save save the selected/entered data and returns to the parent menu.

General parameters	
Time periods	
Shift duration	8 hour
Start of day hour	6 hour
Start of month day	first day
Multiday period	10 day
Save Change	

Figure 9-112 Time periods data page

The data fields on the data page are as follows:

- Shift duration;
 - o 8 hours;
 - o 12 hours;
- Start of day hour;
- Any hours from 0 to 23
- Start of month day
 - o first day;
 - o last day;
- Multiday period
 - o from 5 to 15 days;

Pressing Save key message appears:

Changing the time period length will erase all the archive data. Proceed?

If operator selects yes then the new time periods are accepted and archive data are erased.

9.2.3.4 User defined setup

9.2.3.4.1 Display

9.2.3.4.1.1 Summary display setup

Route in the menu tree:	
-------------------------	--

Parameters General data User defined Display page setup Summary display setup					
Biopidy page coup contrary depidy coup	Parameters	General data	User defined	Display page setup	Summary display setup

Function of the F keys on the Summary display setup data pages

- select the next field for editing
- f select the previous field for editing
- ⇒ enter the display page for editing

Change modify the selected data field

OK Confirm the selection

Save save the selected/entered data and returns to the parent menu.

Editing summary	display
<mark>Stream number</mark> Display number Display type	1 1 general
	3
Change -	

Figure 9-113 Summary display setup data page

The data fields on the data page are as follows:

• Stream number;

Separate summary displays defined for each stream.

- \circ from 1 to 12;
- Display number;
 - o 1;
 - o 3;
 - o 4;

Display 2 is not editable. It is the large character version of display 1.

- Display type;
 - o general;

Displays the most important metered and calculated data

o prev. month (previous month);

Displays totals and averages for the previous month.

o curr. month (current month); Displays totals and averages for the current month.

The default displays for each display type are shown on the figures below.

Function of the F keys on the Display editing data pages

- ♣ select the next field for editing
- ⇐ select the previous item to display in the selected line
- ⇒ select the next item to display in the selected line
- **OK** Confirm the selection

Save save the selected/entered data and returns to the parent menu.

01.st/1 disp. NGAS-ORIFICE
CVOL flowrate
ENGY flowrate
Gauge pressure
Abs. pressure
Temperature
Temp. at'+' side
Inuse diff.press.
Relative density
Base density
Line density
Inf.cal.value
Sup.cal.value
2010.11.14. 11:39:57

Figure 9-114 Display editing data page, General display

Stream data ava	ailable for insertion into genera	al display		
Stream data	Physical stream			
		Flow rate	Other pa	rameter
			Totalization	Averaging
CVOL flowrate/h	х	х	-	-
CVOL flowrate/day	х	х	-	-
UVOL flowrate/h	X	-	_	-
UVOL flowrate/day	X	-	_	-
Raw UVOL flowrate/h	х	-	-	-
Raw UVOL flowrate/day	х		-	-
MASS flowrate/h	X	Х	_	-
MASS flowrate/day	X	Х	_	-
ENGY flowrate/h	X	Х	_	-
ENGY flowrate/day	х	х	-	-
CVOL	х	х	-	-
UVOL	Х	-	-	-
Raw UVOL	Х	-	-	-
MASS	Х	х	-	-
ENERGY	Х	х	-	-

Equilt CVOI	v	×		
Fault CVOL	<u> </u>	X	-	-
Fault UVOL Fault Raw UVOL	<u> </u>	-	-	-
	<u> </u>	-	-	-
Fault MASS Fault ENERGY	<u> </u>	X	-	-
Premium CVOL	X	X	-	-
	X	X	-	-
Premium UVOL	X	-	-	-
Premium MASS	Х	X	-	-
Premium ENERGY	X	X	-	-
Abs. pressure	X	-	-	-
Gauge pressure	X	-	-	-
Temperature	X	-	-	-
Temperature forward	X	-	-	-
Temperature return	Х	-	-	-
Ambient temperature	X	-	-	-
Temperature @"+" side	X	-	-	-
Line density	Х	-	-	-
Base density	X	-	-	_
Relative density	X	-	-	_
Inferior calorific value	X	-	-	_
Superior calorific value	X	-	-	_
C02	X	_	-	_
N2	X	_	-	_
H2O	X	_	-	_
Inuse diff. pressure	X	-	-	-
Diff. pressure Hi	X	-	-	-
Diff pressure Mid	X	-	-	-
Diff pressure Lo	X	_	-	_
Current day CVOL	X	Х	-	_
Previous day CVOL	X	X	-	_
Current month CVOL	X	Х	-	_
Previous month CVOL	X	X	-	-
Specific carbon content	X	-	-	-
CO2 emission flowrate/h	X	X	-	-
CO2 emission flowrate/day	X	X	-	-
CO2 emission mass	X	X	-	-
Line compression factor	X	-	-	-
Conversion factor	X	_	-	-
Base compression factor	X	_	-	-
Line/Base compression factor	X	-	-	-
Flow time	X	_	-	_
Fault flow time	X	-	-	-
Ethanol % (m/m)	X			
Ethanol %(v/v)	X			
Pressure at density meter	X			
Temperature at density meter	X			
Density meter 1 body temperature	X			
Density meter 2 body temperature	X			
Inuse measured density	Х			
Batch MASS	X			
Batch CVOL	Х			
Batch UVOL	Х			
Date and time	Х	Х	х	Х

(empty line)	х	Х	х	Х
Calculated variable (in unit/h)	-	-	х	х
Totalized calculated variable (in unit)	-	-	Х	-

Table 9-12 Stream data for general summary display

01.st/3 disp. NGAS-ORIFICE
Prv.month avg.press.
Prv.month avg.temp.
Prv.month avg.K
Previous month CVOL
Prev.month flt CVOL
Prv.month UVOL
Prv.month flt UVOL
Prv.month flow time
Prv.month flt ftime
2010.11.14. 11:40:26

Figure 9-115 Display editing data page, Previous month display

Stream data available for insertion into previous month display				
Stream data	Physical stream	Virtual stream		
		Flow rate	Other pa	arameter
			Totalization	Averaging
Previous month average pressure	х	_	_	-
Previous month average temperature	х	-	-	-
Previous month average K(=Zl/Zb)	х	-	-	-
Previous month CVOL	х	х	-	-
Previous month fault CVOL	х	х	-	-
Previous month UVOL	Х	-	-	-
Previous month fault UVOL	Х	-	-	-
Previous month max hourly CVOL	Х	-	-	-
Previous month max CVOL time	Х	-	-	-
Previous month flow time	Х	-	-	-
Previous month fault flow time	Х	-	-	-
Date and time	Х	-	-	-
(empty line)	х	-	_	_

01.st/4 disp. NGAS-ORIFICE
Cur.month avg.press.
Cur.month avg.temp.
Cur.month avg.K
Current month CVOL
Cur.month flt CVOL
Current month UVOL
Cur.month flt UVOL
Cur.month flow time
Cur.month flt ftime
CVOL
Fault CVOL
UVOL
Fault UVOL

Figure 9-116 Display editing data page, Current month display

Stream data available for insert	tion into current mor	nth display		
Stream data	Physical stream	Virtual stream		
		Flow rate	Other pa	rameter
			Totalization	Averaging
Current month average pressure	Х	-	-	-
Current month average temperature	Х	_	-	-
Current month average K(=Zl/Zb)	Х	_	-	-
Current hour CVOL	Х	-	-	-
Current month CVOL	Х	х	-	-
Current month fault CVOL	Х	х	-	-
Current hour UVOL	Х	-	-	-
Current month UVOL	Х	_	-	-
Current month fault UVOL	Х	-	-	-
Current month flow time	Х	-	-	-
Current month fault flow time	Х	-	-	-
CVOL cumulative total	Х	-	-	-
Fault CVOL cumulative total	Х	-	-	-
UVOL cumulative total	Х	-	_	_
Fault UVOL cumulative total	Х	-	_	_
Date and time	Х			-
(empty line)	Х	-	-	-

 Table 9-14 Stream data for current month summary display

9.2.3.4.1.2 Extra summary display setup

Route in the menu tree:ParametersGeneral dataUser definedDisplay page setupExtra summary display setup

Function of the F keys on the Extra summary display setup data pages

- select the next field for editing
- **企** select the previous field for editing
- ⇒ enter the display page for editing

Change modify the selected data field

OK Confirm the selection

Save save the selected/entered data and returns to the parent menu.

Str.N	ю.	Item
1	CVOL	
2	CVOL	
3	CVOL	
4	CVOL	
5	CVOL	
6	CAOF	
8	MASS	
_		Save

Figure 9-117 Extra summary display setup data page

The Extra summary display allows group together on single display page data from different streams.

The data fields on the data page are as follows:

- Display number;
 - o 1;
 - o 2;

After entering the selected display page the stream number and the data item to be displayed can be selected. All the data which can be inserted into general display (see Table 9.5.) can be inserted into extra summary display as well.

9.2.3.4.2 Reports

Route in the menu tree:			
Parameters	General data	User defined	Reports

Function of the F keys on the Reports setup data pages

⇒ enter the display page for editing

Change modify the selected data field



Figure 9-118 User defined report selection data page

There are two types of user defined reports available to report the hourly quantities and averages.

In User report 1 and User report 2 each report consists of 7 data columns. The first column is reserved for the data and time. The data items to be displayed in column 2 to 7 are freely configurable. After selecting the serial number of the report (1 or 2) the setup data page appears.

Function of the F keys on the User report editing data pages

- select the next field for editing
- select the previous item to display in the selected line
- ⇒ select the next item to display in the selected line
- **OK** Confirm the selection

Save save the selected/entered data and returns to the parent menu.

User report 1			
column 1 2 3 4 5	Str.No. 1 1 1	Iten Date - Time UVOL CVOL ENERGY Press average	
6 7 (Temp average Inf.cal.val.aver	

Figure 9-119 User report editing data page for User report 1 and 2

The data fields on the data page are as follows:

• Str.No. (Stream number);

```
o from 1 to 12; (Selecting --- (dashes) the column will be left empty.)
```

- Item;
 - o UVOL; (volume at line conditions)
 - o CVOL; (volume at base conditions)
 - o Mass; (mass)
 - o Energy; (energy)
 - o CO2 mass; (CO2 emission mass)
 - o Fault CVOL; (volume at base conditions at fault condition)
 - o Fault Mass; (mass at fault condition)
 - o Fault Energy; (energy at fault condition)
 - o Fault CO2 mass; (CO2 emission mass at fault condition)
 - o Premium CVOL; (premium volume at base conditions)
- o Premium Mass; (premium mass)
- o Premium Energy; (premium energy)
- o Premium CO2 mass; (premium CO2 emission mass)
- o Temp average; (average temperature)
- o Press average; (average pressure)
- odP average; (average differential pressure)
- o Line dens average; (average line density)

```
o K(Zl/Zb) average; (average compressibility ratio)
```

```
o Spec.carb.average; (average specific carbon content)
```

```
o Inf.cal.val.average; (average inferior calorific value)
```

```
o Sup.cal.val.average; (average superior calorific value)
```

```
o Rel.dens.average; (average relative density)
```

```
o Flow time; (flow duration)
```

```
o Fault time; (fault flow duration)
```

User defini	ed report3		llse	r definied	report3
Stream number 1	ou repervo		2	1	CVOL
Company 1			3	1	Mass
Company 2			4	1	Energy
Company 3			Daily column	Str.No.	Items
Location			1	1	UVOL
Total col. Str.No.	Items		2	1	CVOL
1 1	UVOL		3	1	Mass
2 1	CVOL		4	1	Energy
3 1	Mass		5	1	CO2 mass
4 1	Energy		6	1	Temp average
Daily column Str.No.	Items		7	1	Press average
1 1	UVOL		Hour column	Str.No.	Itens
2 1	CVOL		1	1	UVOL
Save Change			Save C	hange	
	User	definie	ed report3		
	4	1	Energy		
	5	1	CO2 mass		
	6	1	Temp avera	age	
	7	1	Press aver	rage	
	Hour column	Str.No.	Items		
	1	1	UVOL		
	2	1	CVOL		
	3	1	Mass		
	4	1	Energy		
	5	1	CO2 mass		
	6	1	Temp avera	age	
	7	1	Press aver		
	8	1	dP average		
	Save Ch	ange) (

Figure 9-120 User report editing data page for User reports 3 to 10

User report 3 to User report 10 are daily billing reports for streams. Each of the 8 reports can be freely assigned to any stream. See sample of reports in Annex A.

The reports are consist of 5 sections:

- header section;
- totals section;
- daily data section;
- hourly data section;
- footer section.

In the header section general data of the metering stream are indicated.

In the totals section totals are indicated in four columns. The type of totals can be selected from the list as follows:

- o UVOL; (volume at line conditions)
- o CVOL; (volume at base conditions)
- o Mass; (mass)
- o Energy; (energy)
- o CO2 mass; (CO2 emission mass)
- o Fault UVOL; (volume at line conditions at fault condition)
- o Fault CVOL; (volume at base conditions at fault condition)

```
o Fault Mass; (mass at fault condition)
```

- o Fault Energy; (energy at fault condition)
- o Fault CO2 mass; (CO2 emission mass at fault condition)
- o Premium UVOL; (premium volume at line conditions)
- o Premium CVOL; (premium volume at base conditions)
- o Premium Mass; (premium mass)
- o Premium Energy; (premium energy)
- o Premium CO2 mass; (premium CO2 emission mass)

The report will indicate the total for the previous day, for the current day and the cumulative total, for the type of total selected.

In the daily data section totals and/or averages are indicated in 7 columns. The type of totals/averages can be selected from the list as follows:

```
o UVOL; (volume at line conditions)
• CVOL; (volume at base conditions)
o Mass; (mass)
o Energy; (energy)
o CO2 mass; (CO2 emission mass)
o Fault UVOL; (volume at line conditions at fault condition)
o Fault CVOL; (volume at base conditions at fault condition)
o Fault Mass; (mass at fault condition)
o Fault Energy; (energy at fault condition)
o Fault CO2 mass; (CO2 emission mass at fault condition)
o Premium UVOL; (premium volume at line conditions)
o Premium CVOL; (premium volume at base conditions)
o Premium Mass; (premium mass)
o Premium Energy; (premium energy)
o Premium CO2 mass; (premium CO2 emission mass)
o Temp average; (average temperature)
o Press average; (average pressure)
odP average; (average differential pressure)
o K(Z1/Zb) average; (average compressibility ratio)
o Spec.carb.average; (average specific carbon content)
o Inf.cal.val.average; (average inferior calorific value)
o Sup.cal.val.average; (average superior calorific value)
o Line dens average; (average line density)
o Base dens average; (average base density)
o Rel.dens.average; (average relative density)
o Flow time; (flow duration)
o GC updates; (number of times the gas composition has been updated)
o Fault time; (fault flow duration)
```

The report will indicate the value of the totals for the previous day, and the minimum, maximum and average values for the non-total parameters.

In the hourly data section totals and/or averages are indicated in 8 columns. The type of totals/averages can be selected from the list as follows:

o UVOL; (volume at line conditions)

```
o CVOL; (volume at base conditions)
```

```
o Mass; (mass)
```

```
o Energy; (energy)
```

- o CO2 mass; (CO2 emission mass)
- o Fault UVOL; (volume at line conditions at fault condition)
- o Fault CVOL; (volume at base conditions at fault condition)
- o Fault Mass; (mass at fault condition)
- o Fault Energy; (energy at fault condition)
- o Fault CO2 mass; (CO2 emission mass at fault condition)
- o Premium UVOL; (premium volume at line conditions)
- o Premium CVOL; (premium volume at base conditions)
- o Premium Mass; (premium mass)
- o Premium Energy; (premium energy)
- o Premium CO2 mass; (premium CO2 emission mass)
- o Temp average; (average temperature)
- o Press average; (average pressure)
- odP average; (average differential pressure)
- o K(Z1/Zb) average; (average compressibility ratio)
- o Spec.carb.average; (average specific carbon content)
- o Inf.cal.val.average; (average inferior calorific value)
- o Sup.cal.val.average; (average superior calorific value)
- o Line dens average; (average line density)
- o Base dens average; (average base density)
- o Rel.dens.average; (average relative density)
- o Flow time; (flow duration)

o GC updates; (number of times the gas composition has been updated)

o Fault time; (fault flow duration)

The report will indicate the value of the totals for each hour during the previous day, and the average values for the non-total parameters.

In the footer section space for signature and three company names are provided.

9.2.3.4.3 Trends

Reserved for future use

9.2.3.5 Password setup

Route in the menu tree:

Parameters General data Password setup

Function of the F keys on the Password setup data pages **Change** modify the selected data field

OK Confirm the selection

Save save the selected/entered data and returns to the parent menu.

Menu returns to the parent menu

General parameters	
Change password	
Level	engineer
Do you want to change	
the password?	yes
Old password:	
New password: ****	
Do you remember it?	yes
Confirm new passw.: ****	
ОК	Menu

Figure 9-121 Password setup data page

The data fields on the data page are as follows:

- Password level;
 - o operator;
 - o engineer;

The Operator and the Engineer password can be modified here. Only the Engineer is allowed to modify the password for both levels.

First the old password shall be entered.

Then the new password is entered.

UNIFLOW-200 then requires entering the new password once again.

If the new passwords entered twice are identical then the password is changed.

CAUTION

The flow computer shipped with empty password list. It means that pressing Enter when the flow computer requires password you log in at Engineering level allowing modification all the parameters. Set your own Operator and Engineering level password to protect the parameters against undesired modification. Remember the password you entered. If you forget your password you will have to ask the assistance of the manufacturer or you have to return the unit to the manufacturer.

9.2.3.6 Reset

9.2.3.6.1 Totals reset

Route in the m	enu tree:		
Parameters	General data	Reset	Totals reset

Function of the F keys on the Totals reset data pages
Change modify the selected data field
OK Confirm the selection
Save save the selected/entered data and returns to the parent menu.
Menu returns to the parent menu

0	
General parameters	
Clear totals	
You will clear all the totals	:
of the selected stream	
Select stream 1 Str.	
Do you really want to clear	
<u> </u>	
all the totals?	no
OK Change	Menu

Figure 9-122 Totals reset data page

The Totals reset command clears all the cumulative and periodic totals in the flow computer for the selected streams.

Totals reset allowed on Engineer password level only.

The data fields on the data page are as follows:

• Select stream;

o from 1 to 12;

o all;

After the stream or all streams are selected UNIFLOW-200 asks to confirm the reset twice. After confirmation all totals are cleared.

9.2.3.6.2 General reset

Route in the m	enu tree:			
Parameters	General data	Reset	General reset	

Function of the F keys on the General reset data pages **Change** modify the selected data field

OK Confirm the selection

Save save the selected/entered data and returns to the parent menu.

Menu returns to the parent menu

General parameters General reset You will reset all the to parameters and event/al for all streams!	•
Do you really want want to reset?	yes
Totals, parameters and will be permanently clea:	
Go on with clear?	no
OK Change	Menu

Figure 9-123 General reset data page

The General reset command:

- clears all the cumulative and periodic totals
- clears all the parameters to their default values
- clears the alarm and event log
- sets all I/O signals to inactive
- sets all streams to not defined

in the flow computer.

General reset allowed on Engineer password level only.

Apply the general reset with extreme care.

UNIFLOW-200 asks to confirm the general reset twice. After the two confirmations general reset is done.

9.2.3.7 Version control

Data to identify the flow computer hardware and software elements are provided in this menu.

 Route in the menu tree:

 Parameters
 General data
 Machine ID

Function of the F keys on the Version control data pages
Change modify the selected data field
OK Confirm the selection
Save save the selected/entered data and returns to the parent menu.
Menu returns to the parent menu

General parameter	rs
Machine ID	
Serial no.	200-167
Machine name	UNIFLOW-200 MFC
CPU :	120 MHz
Software package	
Op.system u2_	_cAL_UX200 v2
Application u2_	_cAA_1.1.4.4_130405
PIC 120	215
1 pos. ANI4PT2	121217,120222
2 pos. PDI0484	120216,120216
3 pos. A0DI0484	120209
4 pos. HTI4x15	120622
5 pos. ANI8	120223,120222
Save Change	e Menu

Figure 9-124 Version control data page

The data fields on the data page are as follows:

- Serial number; Not editable
- Machine name;
 - Any character string can be entered.
 - The default name is UNIFLOW-200 MFC

Allowed characters: uppercase and lowercase letters, numbers, space, underscore, hyphen

- Operating system version; Not editable
- Application version; Not editable
- PIC version; Not editable
- 1 pos.; Type of the I/O board fitted into slot 1.
- 2 pos.;

- Type of the I/O board fitted into slot 2.
- 3 pos.;
- Type of the I/O board fitted into slot 3.
- 4 pos.;
- Type of the I/O board fitted into slot 4.
- 5 pos.;
- Type of the I/O board fitted into slot 5.

Refer these data if you ask manufacturer assistance.

9.2.3.8 Company data

Route in the menu tree:

Parameters	General data	User data
------------	--------------	-----------

Function of the F keys on the Company data data pages

- select the next field for editing
- む select the previous field for editing

Change modify the selected data field

OK Confirm the selection

Save save the selected/entered data and returns to the parent menu.

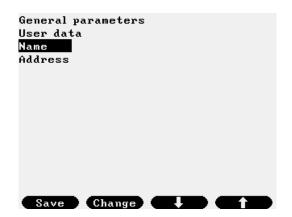


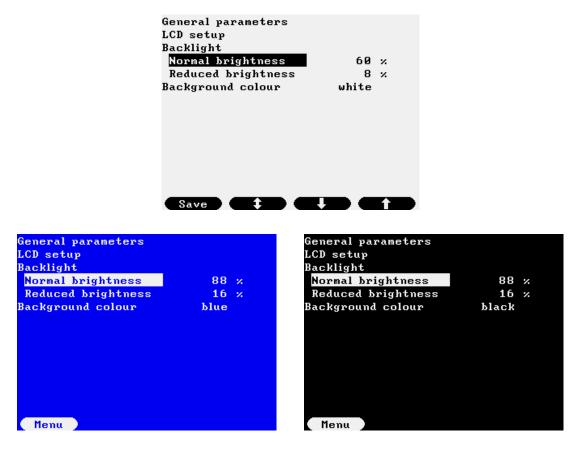
Figure 9-125 User data data page

The data fields on the data page are as follows:

- Name; Any character string can be entered. The default name is empty Allowed characters: uppercase and lowercase letters, numbers, space, underscore, hyphen
- Address; Any character string can be entered. The default address is empty.

9.2.3.9 LCD settings

 Parameters
 General data
 LCD settings


Function of the F keys on the LCD settings data pages

- decrease the brightness
- f increase the brightness
- select the next field for editing

Change change the background color

OK Confirm the selection

Save save the settings and returns to the parent menu.

Figure 9-126 LCD settings data page in different colours

The data fields on the data page are as follows:

- Normal brightness;
- Set the required brightness in normal brightness mode from 20 to 100 % in 4 % steps.
- Reduced brightness; Set the required brightness in reduced brightness mode from 4 to 16 % in 4 % steps.

• Background color;

Set the required background color from the list:

- o blue;
- o black
- o white;

9.2.3.10 Character type

The character type of the display can be selected here. Available selections are:

- Normal font;
- Large font;

General parameters Select character type		General parameters Select character type	
Character type	normal font	Character type	large font
Save Change		Save Change	

Figure 9-127 Character size selection data page

9.2.4 Interfaces

9.2.4.1 Serial ports

Settings for Com1, Com2 and Com3 ports are identical.

Route in the m	nenu tree:			
Parameters	General data	Interfaces	Com ports	Com1

Function of the F keys on the Serial ports data pages

- select the next field for editing
- む select the previous field for editing
- Change modify the selected data field

OK Confirm the selection

Save save the selected/entered data and returns to the parent menu.

Interfaces		Interfaces	
Interface	Com1	Interface	Com2
Туре	RS232	Туре	RS485
RTS/CTS	no	Baud rate	9600
Baud rate	9600	Data bit	8
Data bit	8	Stop bit	1
Stop bit	1	Parity	no
Parity	no	Port Function	STD Modbus slave
Port Function	Flowsic-600 master	Mode	RTU
Mode	ASCII	Modb.dev.addr.	1
Modb.dev.addr.	1	Response delay	1 msec.
Save Cha	nge 🛛 🗸 🕇 🔶	Save Char	nge 💶 💭 🖬 🖬

Figure 9-128 Serial ports data page

The data fields on the data page are as follows:

- Type;
 - o RS232;
 - o RS485;
 - o RS422 MD (multidrop);
 - o RS422 PP (point to point)
- RTS/CTS (handshake);
 - o no;
 - o yes;
- Baud rate;
 - o 1200;
 - o 2400;
 - o 4800;

- o 9600;
- o 19200;
- o 38400;
- Data bits;
 - o 7;
 - 0 8;
 - o 9;
- Stop bits;
 - o **1**;
 - o 2;
- Parity;
 - o none;
 - \circ odd;
 - o even;
- Port function;
 - o STD Modbus slave;

Measured and calculated data can be read from the Uniflow-200 with standard Modbus communication. See details and the Modbus register map in Chapter 10

o Daniel Modbus slave;

Measured and calculated data can be read from the Uniflow-200 with Daniel/Omni/Enron Modbus communication. See details and the Modbus register map in Chapter 10

o Ultrasonic meter;

Selecting ultrasonic meter, new entry line appears to select the type of the ultrasonic meter from the list:

- Caldon US master
- Daniel US master
- Flexim US master
- Flowsic-600 US master
- Krohne US master
- Panamet US master
- QSonic US Uniform
- QSonicPlus US master
- RMA US master
- RMG US master
- Siemens US master

Register address for flow rate data read from US meters is displayed.

UVOL flow rate register addresses fixed to

- 2700 for Com1
- 2708 for Com2
- 2716 for Com3

Note! In the Modbus signal setup (see 9.2.1.8.) these register addresses must be assigned to the Modbus signal.

Modbus mode (RTU or ASCII) and Modbus device address is displayed according to the default settings of the US meter manufacturer.

List of registers read from ultrasonic meter see in 10.7.

o Chromatograph;

Selecting chromatograph, new entry line appears to select the type of the chromatograph from the list:

- ABB GC master;
- ABB2 GC master;
- Daniel GC master;
- Yamatake GC master;
- Yokogawa GC master;

Modbus mode (RTU or ASCII) and Modbus device address is displayed according to the default settings of the chromatograph manufacturer.

List of registers read from chromatographs see in 10.7.

In case of Chromatograph function new data entry lines appear as follows:

• GC number of streams;

Selected from the list:

```
o 1 to 4;
```

• GC str1 -> Stream

Selected from the list:

```
o 1, 2, 3, 4, 5, 6, 7, 8;
```

Selected the serial number of the flow computer physical streams the stream 1 of the gas chromatograph is assigned to. The gas composition measured on stream 1 of the gas chromatograph will be used in the calculations of these streams.

Any number of stream can be assigned to gas chromatograph stream 1.

GC str2 -> Stream

```
Selected from the list:

0 1, 2, 3, 4, 5, 6, 7, 8;

Same as for GC stream 1
```

- GC str3 -> Stream Selected from the list:
 0 1, 2, 3, 4, 5, 6, 7, 8;
 - Same as for GC stream 1
- GC str4 -> Stream
 Selected from the list:
 0 1, 2, 3, 4, 5, 6, 7, 8;

```
Same as for GC stream 1
```

```
o Other;
```

Selecting other, new entry line appears to select the type of the device to communicate with from the list:

```
• Emerson 3095FB MVT;
```

Additional data entry lines for Emerson 3095FB multivariable transmitter

- DP differential pressure register address (fixed to 2700 for Com1, 2708 for Com2 and 2716 for Com3);
- SP static pressure register address (shall be selected from the range 4000 to 4058);
- PT temperature register address (shall be selected from the range 4000 to 4058);

Krohne MFC300 master;

Additional data entry lines for Krohne MFC300 Coriolis flow meter

- Mass flow rate register address (fixed to 2700 for Com1, 2708 for Com2 and 2716 for Com3);
- Line density register address (shall be selected from the range 4000 to 4058);
- Temperature register address (shall be selected from the range 4000 to 4058);
- UVOL flow rate register address (shall be selected from the range 4000 to 4058);
- Counter 1 register address (shall be selected from the range 4000 to 4058);
- Counter 2 register address (shall be selected from the range 4000 to 4058);
- Micromotion master;

Additional data entry lines for Micromotion Coriolis flow meter

- Mass flow rate register address (fixed to 2700 for Com1, 2708 for Com2 and 2716 for Com3);
- Line density register address (shall be selected from the range 4000 to 4058);
- Temperature register address (shall be selected from the range 4000 to 4058);
- Pressure register address (shall be selected from the range 4000 to 4058);

 Meter serial test master; Used in serial test of the flow meters. See. 9.1.8. Mode fixed to ASCII. Number of slaves shall be selected (from 1 to 4 maximum) and Modbus device address for each Slave shall be entered here.

- Meter serial test slave; Used in serial test of the flow meters. See. 9.1.8.
 Mode fixed to ASCII.
 Modbus device address for the Slave shall be entered.
- Prover slave; Used in connection with the Prover computer. See uniflow-200 Prover Computer Instruction Manual. Mode fixed to ASCII. Modbus device address for the Slave shall be entered.
- Serial printer (CP437 setting is suggested); Additional data entry lines for the serial printer:
 - Periodic prints (select if periodic printing is required or not)
 - o no

No periodic printing will be initiated.

o daily;

- The selected reports will be printed at the end of each day.
- o daily & hourly;

The selected reports will be printed at the end of each da8y and at the end of each hour.

If daily or daily & hourly is selected then list of reports appears. It can then be selected for each of them whether print or not to print at the end of period. The reports selectable for printing are as follows:

- o Defined report 1; o Defined report 2; o Defined report 3; o Defined report 4; o Defined report 5; o Defined report 6; o Defined report 7; o Defined report 8; o Defined report 9; o Defined report 10; o Cur.day (hourly short);
- o Batch;
- Mode

Selected from the list:

- o RTU;
- o ASCII;
- Modb. dev. addr. (Modbus device address); Valid addresses from 0 to 256.
- Resp. delay (Response delay) in milliseconds; Required only if Port type = RS485 or RS422 MD selected. UNIFLOW-200 will not send response to query within this delay time

9.2.4.2 Ethernet port

Route in the m	enu tree:		
Parameters	General data	Interfaces	Ethernet

Function of the F keys on the Ethernet port data pages

- select the next field for editing
- ŵ select the previous field for editing
- ⇔ select the next entry field within line

Change modify the selected data field

OK Confirm the selection

Save save the selected/entered data and returns to the parent menu.

Interfaces	
Interface	Ethernet
IP address	192.168. 0.235
Subnet mask	255.255.255. 0
Default getaway	192.168. 0. 1
Modb.dev.addr.	1
Reg. assignment	Daniel
DHCP server	no
Save 🔶 🔶	

Figure 9-129 Ethernet port data page

The data fields on the data page are as follows:

- IP address;
- Subnet mask;
- Default gateway;
- Modb. dev. addr. (Modbus device address); Valid addresses from 0 to 256.
- Reg. assignment (Register assignment mode); Selected from the list:
 - STD Modbus;

Communication on the Ethernet port shall be done with standard Modbus. See details in Chapter 10.5.

- Daniel Modbus;
 Communication on the Ethernet port shall be done with Daniel/Omni/Enron Modbus.
 See details in Chapter 10.6.
- DHCP server;

Selected from the list:

o enabled;

 \circ disabled

The factory default settings of the Ethernet port are as follows:IP address:192.168.0.100Subnet mask:255.255.255.0Default gateway:192.168.0.1

9.2.4.3 USB

Reserved for future use

9.2.5 Operator parameters

9.2.5.1 Keypad & limits

Data in this menu are allowed to be modified with Operator level password. Generally the pressure and temperature alarm limits and keypad values belong to this group of parameters.

Route in the menu tree:

Parameters	General data	Operator data	Limits

Function of the F keys on the Keypad & limits data pages

- select the next field for editing
- む select the previous field for editing
- select the next stream data for editing

Change modify the selected data field

OK Confirm the selection

Save save the selected/entered data and returns to the stream selection field.

91 Str. Operato:	n nanamatana			01 Str. Operator	nanamatana		
Limits	r parameters			-	, barameters		
				Limits			
Pressure				HI_limit	(hi)	10	bar
L0_scale	(lsc)	0	bar	LOLO_limit	(lolo)	0	bar
HI_scale	(hsc)	10	bar	HIHI_limit	(hihi)	10	bar
LO_limit	(10)	0	bar	Keypad		7	bar
HI_limit	(hi)	10	bar	Temperature			
LOLO_limit	(lolo)	0	bar	L0_scale	(lsc)	-10	°C
HIHI_limit	(hihi)	10	bar	HI_scale	(hsc)	40	°C
Keypad		7	bar	LO_limit	(lo)	-10	°C
Temperature				HI_limit	(hi)	40	°C
L0_scale	(lsc)	-10	°C	LOLO_limit	(lolo)	-10	°C
HI_scale	(hsc)	40	°C	HIHI_limit	(hihi)	40	°C
LO_limit	(10)	-10	°C	Keypad		11	°C
Ţ,	Ok Ok	Men	nu	Save Chan	ye	(Cî	

Figure 9-130 Operator data - limits data page

When the data page appears the stream number is highlighted.

Select the stream to be edited pressing \hat{i} key. Press OK to confirm the selection. The cursor goes to the first editable field.

.0098 .0196 Й Ø Ø 0 0 Й .9569 Й

After pressing Save the cursor goes to the stream select field.

The data fields on the data page are as follows:

- LO_range; Signal input low metering range. Not editable here. Edited in Signals menu at Engineer password level.
- HI range; Signal input high metering range. Not editable here. Edited in Signals menu at Engineer password level.
- LO limit;
- HI_limit;
- LOLO_limit;
- HIHI limit;
- Keypad;

9.2.5.2 **Keypad values**

Data in this menu are allowed to be modified with Operator level password. Generally the gas composition keypad values belong to this group of parameters.

Route in the menu tree:

Parameters General data Operator data Keypad values

Function of the F keys on the Operator parameters – Keypad values data pages

- select the next field for editing Û
- 企 select the previous field for editing
- î select the next stream data for editing
- Change modify the selected data field

OK Confirm the selection

Save save the selected/entered data and returns to the stream selection field.

I Str. Operator parameters Keypad valuesØ1 Str. Operator parameters Keypad valuesRelative density0.555gas composition (molex)Total100.0001Inf.cal.value34.020001 MJ/m³N20.7632 npentane0.0098Sup.cal.value37.779999 MJ/m³CO20.0489 nhexane0.0196gas composition (molex):H2S0 nheptane00.0196N20.7632 ipentane0.0098H2O0.1996 noctane0CO20.0489 nhexane0.0196helium0 nnonane0H2S0 nheptane0methane95.8377 ndecane0H2O0.1996 noctane0propane0.2642CO0methane95.8377 ndecane0ibutane0.0489 H21.9569ethane0.7925 oxygen0nbutane0.0489 H21.9569propane0.2642CO000propane0.2642CO000propane0.2642CO000								
Keypad valuesKeypad valuesRelative density 0.555 gas composition (molex)Total100.0001Inf.cal.value 34.020001 MJ/m^3 N2 0.7632 npentane 0.0098 Sup.cal.value 37.779999 MJ/m^3 CO2 0.0489 nhexane 0.0196 gas composition (molex):H2S0nheptane 0.022 N2 0.7632 ipentane 0.0098 H2O 0.1996 noctane 0.0196 CO2 0.0489 nhexane 0.0196 helium0nnonaneH2S0nheptane0methane 95.8377 ndecane 0.0196 noctane H2O0.1996 noctane0ethane 0.7925 oxygen 0.0196 notane 0.0196 notane H2O0.1996 noctane0methane 95.8377 ndecane 0.0196 notane 0.0196 notane H2O0.1996 noctane0ethane 0.7925 oxygen 0.0196 notane H2O0.1996 noctane0propane 0.2642 CO H2O0.1996 noctane0nhexane 0.0489 H2 H2O0.1996 noctane0propane 0.2642 CO H2O0.1996 noctane0nhexane 0.0489 H2 H2O0.9996 noctane0nhexane 0.0489 Argon </td <td>01 Str. 0</td> <td>perator p</td> <td>arameters</td> <td></td> <td>01 Str. 0</td> <td>perator pa</td> <td>rameters</td> <td></td>	01 Str. 0	perator p	arameters		01 Str. 0	perator pa	rameters	
Relative density 0.555 gas composition (molex)Total100.0001 Inf.cal.value 34.020001 MJ/m³ N2 0.7632 npentane 0.0098 Sup.cal.value 37.779999 MJ/m³ CO2 0.0489 nhexane 0.0196 gas composition (molex): H2S 0 nheptane 0.0196 N2 0.7632 ipentane 0.0098 H2O 0.1996 noctane 0 CO2 0.0489 nhexane 0.0196 helium 0 nnonane 0 H2S 0 nheptane 0.0196 helium 0 nnonane 0 H2O 0.1996 noctane 0 ethane 0.7925 oxygen 0 helium 0 nnonane 0 propane 0.2642 CO 0 methane 95.8377 ndecane 0 ibutane 0.0489 H2 1.9569 ethane 0.7925 oxygen 0 nbutane 0.0489 Argon					Keypad v	alues		
Inf.cal.value 34.020001 MJ/m^3 N2 0.7632 npentane $0.0098 \text{ Sup.cal.value}$ Sup.cal.value 37.779999 MJ/m^3 CO2 0.0489 nhexane 0.0196 neptane gas composition (molex):H2S0nheptane 0.028 nheptane N2 0.7632 ipentane 0.0098 H2O 0.1996 noctane 0.0196 noctane CO2 0.0489 nhexane 0.0196 helium 0 nnonane 0.0196 noctane H2S 0 nheptane 0 methane 95.8377 ndecane 0.0196 noctane H2O 0.1996 noctane 0 ethane 0.2642 CO 0.028 neptane H2O 0.1996 noctane 0 propane 0.2642 CO 0.028 neptane H2O 0.7925 oxygen 0 nbutane 0.0489 H2 1.9569 notane			0.555		gas comp	osition (mo	le%)Total10	0.0001
gas composition (molex):H2S0nheptaneN20.7632ipentane0.0098H2O0.1996noctane0CO20.0489nhexane0.0196helium0nnonane0H2S0nheptane0methane95.8377ndecane0H2O0.1996noctane0ethane0.7925oxygen0Helium0nnonane0propane0.2642CO0methane95.8377ndecane0ibutane0.0489H21.9569ethane0.7925oxygen0nbutane0.0489Argon0		-	34.020001	MJ∠m ³	N2	0.7632	npentane	0.0098
gas composition (molex): H2S 0 nheptane 0 N2 0.7632 ipentane 0.0098 H2O 0.1996 noctane 0 C02 0.0489 nhexane 0.0196 helium 0 nnonane 0 H2S 0 nheptane 0 methane 95.8377 ndecane 0 H2O 0.1996 noctane 0 ethane 0.7925 oxygen 0 H2O 0.1996 noctane 0 propane 0.2642 CO 0 H2O 0.7925 oxygen 0 ibutane 0.0489 H2 1.9569 H2O 0.7925 oxygen 0 nbutane 0.0489 argon	Sup.cal.v	alue	37.779999	MJ∕m ³	C02	0.0489	nhexane	0.0196
N2 0.7632 ipentane 0.0098 H20 0.1996 noctane 0 C02 0.0489 nhexane 0.0196 helium 0 nnonane 0 H2S 0 nheptane 0 methane 95.8377 ndecane 0 H2O 0.1996 noctane 0 ethane 0.7925 oxygen 0 helium 0 nnonane 0 propane 0.2642 C0 0 methane 95.8377 ndecane 0 ibutane 0.0489 H2 1.9569 ethane 0.7925 oxygen 0 nbutane 0.0489 argon	-		olez):		H2S	0	nheptane	(
H2S 0 nheptane 0 methane 95.8377 ndecane 0 H2O 0.1996 noctane 0 ethane 0.7925 oxygen 0 helium 0 nnonane 0 propane 0.2642 CO 0 methane 95.8377 ndecane 0 ibutane 0.0489 H2 1.9569 ethane 0.7925 oxygen 0 nbutane 0.0489 argon	-			0.0098	H20	0.1996	noctane	e
H200.1996noctane0ethane0.7925oxygen0helium0nnonane0propane0.2642CO0methane95.8377ndecane0ibutane0.0489H21.9569ethane0.7925oxygen0nbutane0.0489argon	C02	0.0489	nhexane	0.0196	helium	0	nnonane	e
helium0nnonane0propane0.2642CO0methane95.8377ndecane0ibutane0.0489H21.9569ethane0.7925oxygen0nbutane0.0489argon	H2S	0	nheptane	0	methane	95.8377	ndecane	(
helium 0 nnonane 0 propane 0.2642 CO methane 95.8377 ndecane 0 ibutane 0.0489 H2 1.9569 ethane 0.7925 oxygen 0 nbutane 0.0489 <mark>argon</mark> 0	H20	0.1996	noctane	0	ethane	0.7925	oxygen	e
methane 95.8377 ndecane 0 ibutane 0.0489 H2 1.9569 ethane 0.7925 oxygen 0 nbutane 0.0489 <mark>argon</mark> 0	helium	0	nnonane	0	propane	0.2642	30	6
	methane	95.8377	ndecane	0		0.0489	H2	1.9569
	ethane	0.7925	oxygen	0	nbutane	0.0489	argon	
	propane	0.2642	CO	0	ipentane			ponent
Cial Ok Menu Save Change Cial Change			Ok	Menu				

01 Str. Operator	• parameters
Keypad values	-
gas composition	(mole%)Total100.0001
ammonia	0 air 0
benzene	0
dimet-prop-22	0
met-pent-2	0
met-pent-3	0
dimet-but-22	0
dimet-but-23	0
ethylene	0
propylene	0
meth-alcohol	0
sulf-dioxid	0
Save Chang	

Figure 9-131 Keypad values data page

When the data page appears the stream number is highlighted.

Select the stream to be edited pressing \hat{u} key. Press OK to confirm the selection. The cursor goes to the first editable field.

If no gas composition is available in the stream (e.g. the stream measures liquid) then the data page is empty. After pressing Save the cursor goes to the stream select field.

The data fields on the data page are as follows:

- Relative density;
- Inferior calorific value;
- Superior calorific value;
- 21 gas components;

The name of the components abbreviated are as follows:

- N2 nitrogen
- CO2 carbon-dioxide
- H2S hydrogen-sulfide
- H2O water
- He helium
- C1 methane
- C2 ethane
- C3 propane
- nC4 n-butane
- iC4 i-butane
- nC5 n-pentane
- iC5 i-pentane
- nC6 n-hexane
- nC7 n-heptane
- nC8 n-octane
- nC9 n-nonane
- nC10 n-decane
- O2 oxygen
- CO carbon-monoxide
- H2 hydrogen
- Ar argon

9.2.6 Restore

Route in the menu tree:

Parameters	Restore	Param. project
		Firmware

Function of the F keys on the Restore data pages **Change** modify the selected data field

OK Confirm the selection

Save save the selected/entered data and returns to the parent menu.

Menu returns to the parent menu

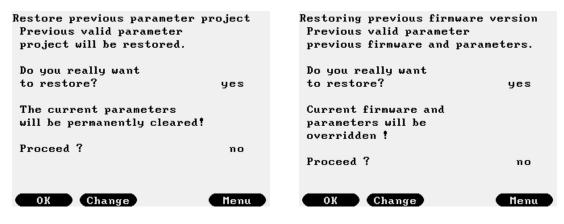


Figure 9-132 Restore data page

In some cases it might be necessary to return to the parameter set or to the firmware being valid before new parameter set or new firmware was downloaded into UNIFLOW-200.

Entering into Restore menu the Parameter project or the Firmware to be restored shall be selected.

Restore is allowed on Engineer password level only. Apply the Restore with extreme care.

UNIFLOW-200 asks to confirm the Restore twice. After the two confirmations Restore is done.

Be patient. It might take several minutes for Uniflow-200 to finish the restore process.

Never power cycle Uniflow-200 during the restore process. It might make Uniflow-200 unusable and it shall be returned to the manufacturer for repair.

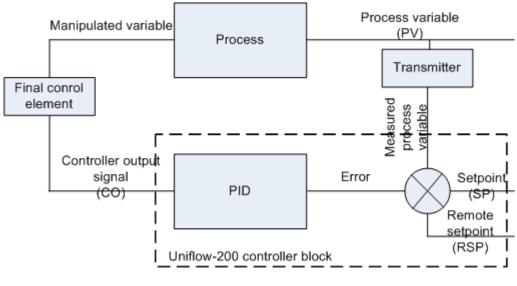
9.2.7 PID Control

9.2.7.1 Operation of the PID control

Uniflow-200 is capable to act as a traditional PID (Proportional Integral Derivative) controller. Maximum of 8 control loops can be configured in each Uniflow-200.

Each control loop can be defined as:

- single loop controller
- dual loop controller for unidirectional flow
- dual loop controller for bidirectional flow


The dual loop controller can be configured to control pressure and flow as follows:

- Pout/max qmax/q controller
- Pin/min qmax/q controller

See later the detailed explanation.

9.2.7.1.1 Single loop controller

Block diagram of the single variable control loop is shown on the picture below.

Single variable control loop

Figure 9-133 Single variable control loop

The purpose of the operation of the PID loop is to keep the process variable (PV) as close as possible to the desired set point (SP) by adjusting the manipulated variable.

The process variable is measured directly by sensor or transmitter or calculated from the measured signal. The control block continuously calculates the difference between the current value of the process variable and the setpoint, i. e. the error. If the error is not zero, then the control block modifies the controller output signal. The modified signal gets to the final control element (which is most of the time a control valve) and modify its position.

The final control element modifies generally some fluid or energy flow rate (this is the manipulated variable), which affects the value of the process variable in such a way that it gets closer to the setpoint.

In the controller block of the Uniflow-200 the process variable can be selected as:

- analog input (e. g. pressure);

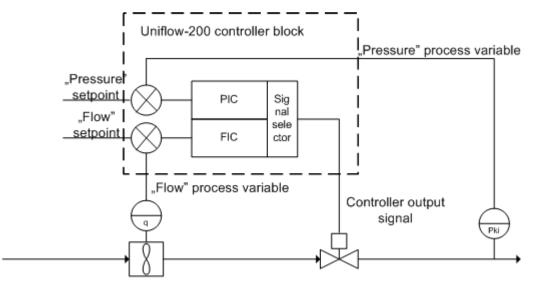
- any calculated flow rate (volume at line conditions, volume at base conditions, mass or energy) of any metering stream.

The controller output signal is one of the analog output signal of the Uniflow-200.

9.2.7.1.2 Dual loop controller

The dual loop controller block consists of two control loops inside one control block.

One of them is a pressure control loop (PIC) the other is a flow control loop (FIC). Both control loops are permanently in operation and based on their own process variable, setpoint and tuning parameters both of them calculate their own controller output signal. The two signals go through a signal selection block which passes over the lowest signal to the output of the dual loop control block, i. e. to the analog output channel of Uniflow-200 and finally to the final control element.


The dual control loop block is designed to perform typical for natural gas industry control functions as follows:

- flow control with outlet pressure upper limit control, or, outlet pressure control with flow rate upper limit control (Pout/max – q max/q);
- flow control with inlet pressure lower limit control, or, inlet pressure control with flow rate upper limit control (Pin/min – q max/q);

The control function is selected during the set up of the control block.

9.2.7.1.2.1 Dual loop controller with outlet pressure control

Block diagram of the dual loop controller performing flow control with outlet pressure upper limit control, or, outlet pressure control with flow rate upper limit control is shown on the picture below.

Flow rate (q) control with outlet pressure (Pout) upper limit control Outlet pressure (Pout) control with flow rate (q) upper limit control

Figure 9-134 Dual loop controller with outlet pressure control

Operation of the control block is explained through a numerical example below.

The control action of the PIC loop is "reverse" in this configuration. Reverse control action means that in case of positive error (error = PV - SP, i. e. PV > SP, the outlet pressure is higher then the desired outlet pressure) the controller output signal is decreasing (the control valve closes) and in case of negative error (PV < SP, the outlet pressure is lower then the desired outlet pressure) increasing (the control valve opens).

The control action of the FIC loop is also "reverse" in this configuration. It means that in case of positive error (error = PV - SP, i. e. PV > SP, the flow rate is higher then the desired flow rate) the controller output signal is decreasing (the control valve is closing) and in case of negative error (PV < SP, the flow rate is lower then the desired flow rate) increasing (the control valve is opening).

Lets have the FIC loop setpoint 20 000 m3/h and the PIC loop setpoint 60 bar.

Let suppose that the controlled system is in equilibrium which means that the consumers on the pipeline connected to the outlet side of the control valve take off gas quantity from the pipeline equal to the quantity passed through the control valve and fed into the pipeline.

Lets have

- pressure at the inlet side of the control valve: 62 bar
- pressure at the outlet side of the control valve: 58 bar
- output signal of the FIC loop 50 % (this is the lowest from the two output signals so that it gets to the outlet of the control block);
- outlet signal of the PIC loop 100 % (the error = PV (58 bar) SP (60 bar) is negative, so that because of the reverse control action the output signal reaches 100 % after certain period of time);
- volume flow rate through the control valve at 50 % opening stage 20 000 m3/h.

Let suppose that consumers at the outlet side reduced the quantity of the gas taken off from the pipeline. As a consequences the pressure increases at the outlet side of the control valve.

With higher outlet pressure the differential pressure across the valve decreases so that the flow rate through the valve decreases. The FIC control loop will have negative error (= PV - SP), and having reverse control action it will increase the FIC loop output signal. The FIC control loop is trying to increase the flow rate to achieve setpoint.

As the intake flow higher than the off-take flow after certain period of time the pressure reaches the outlet pressure setpoint at the outlet side of the control valve. At that moment the error in the PIC loop become positive so that, because of the reverse control action the PIC loop decreases its output signal. When the decreasing PIC output signal become lower than the increasing FIC loop output signal the PIC loop takes over the control, the output signal of the control block decreases so that the control valves is closing and the flow rate through the valve is decreasing.

PIC loop keeps the outlet pressure at the desired setpoint while the flow rate will be lower than the flow rate setpoint.

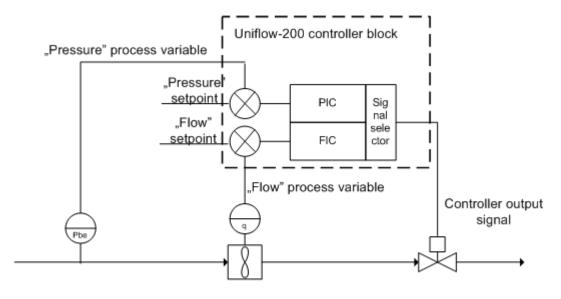
As far as the error in the FIC loop will be negative all the time, the FIC loop output signal reaches 100 % after certain period of time.

If later the quantity of the gas taken off by the consumers increases then the pressure decreases, the error of the PIC loop become negative and the PIC loop increases its output signal (reverse action) and opens the control valve. The flow rate increases then.

When the flow rate reaches the FIC loop setpoint the FIC loop error become positive and the FIC loop decreases its output signal (reverse action).

When the decreasing FIC output signal become lower than the increasing PIC loop output signal the FIC loop takes over the control, the output signal of the control block decreases so that the control valves closes and the flow rate through the valve is decreasing.

FIC loop keeps the flow reat at the desired setpoint while the outlet pressure will be lower than the outlet pressure setpoint.


As far as the error in the PIC loop will be negative all the time, the PIC loop output signal reaches 100 % after certain period of time.

The dual loop controller

- controls the flow rate when the flow rate reaches the FIC loop setpoint (the outlet pressure will be below the PIC loop setpoint in this case) and
- controls the outlet pressure when the outlet pressure reaches the PIC loop setpoint (the flow rate will be below the FIC loop setpoint in this case).

9.2.7.1.2.2 Dual loop controller with inlet pressure control

Block diagram of the dual loop controller performing flow control with inlet pressure lower limit control, or, inlet pressure control with flow rate upper limit control is shown on the picture below.

Flow rate (q) control with inlet pressure (Pin) lower limit control Inlet pressure (Pin) control with flow rate (q) upper limit control

Figure 9-135 Dual loop controller with inlet pressure control

Operation of the control block is explained through a numerical example below.

The control action of the PIC loop is "forward" in this configuration. Forward control action means that in case of positive error (error = PV - SP, i. e. PV > SP, the inlet pressure is higher then the desired inlet pressure) the controller output signal is increasing (the control valve opens) and in case of negative error (PV < SP, the inlet pressure is lower then the desired inlet pressure) decreasing (the control valve closes).

The control action of the FIC loop is "reverse" in this configuration. It means that in case of positive error (error = PV - SP, i. e. PV > SP, the flow rate is higher then the desired flow rate) the controller output signal is decreasing (the control valve closes) and in case of negative error (PV < SP, the flow rate is lower then the desired flow rate) increasing (the control valve opens).

Lets have the FIC loop setpoint 20 000 m3/h and the PIC loop setpoint 60 bar.

Let suppose that the controlled system is in equilibrium which means that the suppliers on the pipeline connected to the inlet side of the control valve put gas quantity into the pipeline equal to the quantity passed through the control valve and taken off from the pipeline.

Lets have

- pressure at the inlet side of the control valve: 62 bar
- pressure at the outlet side of the control valve: 58 bar
- output signal of the FIC loop 50 % (this is the lowest from the two output signals so that it gets to the outlet of the control block);
- outlet signal of the PIC loop 100 % (the error = PV (62 bar) SP (60 bar) is positive, so that because of the forward control action the output signal reaches 100 % after certain period of time);
- volume flow rate through the control valve at 50 % opening stage 20 000 m3/h.

Let suppose that suppliers at the inlet side reduced the quantity of the gas put into the pipeline. As a consequences the pressure decreases at the inlet side of the control valve.

With lower inlet pressure the differential pressure across the valve decreases so that the flow rate through the valve decreases. The FIC control loop will have negative error (= PV - SP), and having reverse control action it will increase the FIC loop output signal. The FIC control loop is trying to increase the flow rate to achieve setpoint.

As the intake flow rate lower than the flow rate through the control valve after certain period of time the pressure reaches the inlet pressure setpoint at the inlet side of the control valve. At that moment the error in the PIC loop become negative so that, because of the forward control action the PIC loop decreases its output signal. When the decreasing PIC output signal become lower than the increasing FIC loop output signal the PIC loop takes over the control, the output signal of the control block decreases so that the control valves is closing and the flow rate through the valve is decreasing.

PIC loop keeps the inlet pressure at the desired setpoint while the flow rate will be lower than the flow rate setpoint.

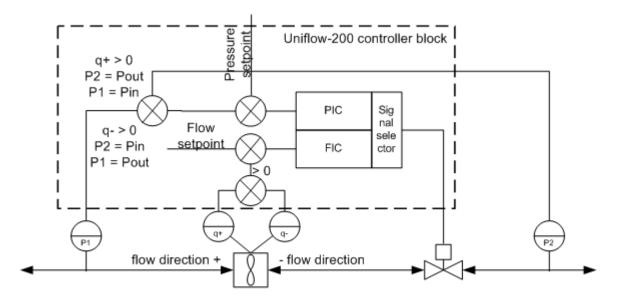
As far as the error in the FIC loop will be negative all the time, the FIC loop output signal reaches 100 % after certain period of time.

If later the quantity of the gas put by the suppliers into the pipeline increases then the pressure increases, the error of the PIC loop become positive and the PIC loop increases its output signal (forward action) and opens the control valve. The flow rate increases then.

When the flow rate reaches the FIC loop setpoint the FIC loop error become positive and the FIC loop decreases its output signal (reverse action).

When the decreasing FIC output signal become lower than the increasing PIC loop output signal the FIC loop takes over the control, the output signal of the control block decreases so that the control valves closes and the flow rate through the valve is decreasing.

FIC loop keeps the flow rate at the desired setpoint while the inlet pressure will be higher than the inlet pressure setpoint.


As far as the error in the PIC loop will be positive all the time, the PIC loop output signal reaches 100 % after certain period of time.

The dual loop controller

- controls the flow rate when the flow rate reaches the FIC loop setpoint (the inlet pressure will be above the PIC loop setpoint in this case) and
- controls the inlet pressure when the inlet pressure reaches the PIC loop setpoint (the flow rate will be below the FIC loop setpoint in this case).

9.2.7.1.2.3 Dual loop controller for bidirectional flow

Block diagram of the dual loop controller for bidirectional flow is shown on the picture below.

Flow rate control with inlet pressue lower limit control Flow rate control with outlet pressue upper limit control

Figure 9-136 Dual loop controller for bidirectional flow

In case of bidirectional flow measurement (e. g. with ultrasonic flow meter) Uniflow-200 measures and totalizes the flow in separate metering streams for the positive (+) and negative (-) flow direction. In the dual loop controller for bidirectional flow the process variable of the FIC loop is automatically selected, depending on the flow direction.

If the outlet pressure is controlled with flow rate control:

- in case of positive flow direction pressure P2 will be the outlet pressure;
- in case of negative flow direction pressure P1 will be the outlet pressure;

If the inlet pressure is controlled with flow rate control:

- in case of positive flow direction pressure P1 will be the inlet pressure;
- in case of negative flow direction pressure P2 will be the inlet pressure;

Depending on the control function to be performed and the flow direction the pressure process variable selected automatically.

Otherwise the controller block works as described in par. 13.6.1.2.1. and 13.6.1.2.2.

9.2.7.2 Calculation algorithm of the controller

Outlet signal of the control loops in the Uniflow-200 is calculated according to the formulas show below.

$$u_k = u_{Pk} + u_{Ik} + u_{Dk}$$

$$u_{Pk} = K_P e_k$$
$$u_{Ik} = u_{Ik-1} + \frac{TK_P}{T_I} e_k$$
$$u_{Dk} = \frac{T_D}{T_D + NT} u_{Dk-1} + \frac{T_D N}{T_D + NT} K_P (e_k - e_{k-1})$$
$$e_k = PV_k - SP_k$$

where:

 $\label{eq:KP} \begin{array}{l} u - \text{output signal of the control algorithm;} \\ K_P - \text{proportional gain;} \\ T_I - \text{integration time, s;} \\ T_D - \text{derivative time, s;} \end{array}$

e – error;

PV – process variable;

SP – setpoint;

N – filter constant (N=10)

T - calculation cycle time (T = 0.5 s)

lower indices

P – proportional term;

I – integral term;

D – derivative term;

k – *k*-th calculation cycle;

k-1 - k-1-th calculation cycle ;

9.2.7.3 Set up the PID control

Parameters of the PID control set up can be accessed via menu tree: Main menu / Parameters / PID.

9.2.7.3.1 General set up

Data entry display for the single loop and dual loop controller is shown on the picture below.

PID Control loop PID loop Loop identifier PID loop type PID loop status	PID1 FIC-101 single loop active	PID Control loop PID loop Loop identifier PID loop type Dual PID loop type PID loop status	PID8 FIC/PIC-18 dual loop bidir. Pout/max-qmax/q active
Save → C	Change		Change

Figure 9-137 PID control loop general setup

Parameters to be set up on this screen are as follows:

PID loop	Identifier of the control loop, selected from list: - PID1; - PID2;
	, - PID8;
Loop identifier	Name of the control loop, any text, e. g. FIC-101
PID loop type	Type of the control loop, selected from list: - single loop - dual loop unidirectional - dual loop bidirectional
Dual PID loop type	(only if dual loop controller) Control task, selected from list: - Pout/max – qmax/q; - Pin/min – qmax/q;
PID loop status	Status of the control loop, selected from list: - active; - inactive;

After setting up the general parameters pressing key \Rightarrow leads to the screen for selecting further group of parameters to be set up:

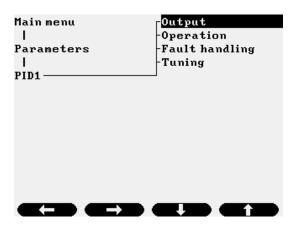


Figure 9-138 PID control loop general setup, parameter group selection

There are separate data entry screens to enter parameters related to:

- output
- operation
- fault handling
- tuning

of the control loop.

9.2.7.3.2 Output

Output signal is defined and set up on the screen below. Screen is identical for single and dual loop controller.

PID1 FIC-101 Output Control loop output Output max. ROC Output clamp low limit Output clamp high limit Manual output signal Output rem. manual mode Rem. manual output sign.	5	IO 1 ch. 25 x/s 0 x 100 x 29.21 x enabled modbus reg.
Save Change	Ŧ	

Figure 9-139 PID control loop setup, output

Control loop output X IO. Y ch.	Analog output channel assigned to the control loop output. Only analog output channel of AODIO484 board is a valid selection. The channel should be set up as "PID CO" in the IO board set up menu.
Output max ROC	Maximum rate of change of the output signal in %/s.
Output clamp low limit	Output clamping low limit, output signal never goes below this limit.

Output clamp high limit	Output clamping high limit, output signal never goes above this limit.
Output manual	Output signal value when controller set to manual mode
Output remote manual mode	Enable/disable manipulating output signal in Manual mode via writing Modbus register. Selected from list: - enabled - disabled
Remote manual signal	Source of the remote manual signal. Selected from list:

- Modbus reg. (only selection)

The analog output channel of the AODIO484 board assigned to the control loop output should be set up as shown on the picture below. Assignment of the channel shall be set to "PID CO" (PID controller output).

5.10/1.ch.	A0DI0484 / A01		A0DI0484 / A01
Signal name		Assignment	PID CO
Assignment	PID CO	L0_current	4 mA
L0_current	4 mA	HI_current	20 mA
HI_current	20 mA	L0_scale	0 ×
L0_scale	0 ×	HI_scale	100 ×
HI_scale	100 ×	LO_limit	0 ×
LO_limit	0 ×	HI_limit	0 ×
HI_limit	0 ×	LOLO_limit	0 ×
LOLO_limit	0 ×	HIHI_limit	0 ×
HIHI_limit	0 ×	Event at	lsc,hsc,lo,hi,lolo,hihi
Event at	lsc,hsc,lo,hi,lolo,hihi	Log	y y n n n n
Log	y y n n n n	Eventing	y y n n n n
Eventing	<u>yynnnn</u>	Signal status	active
Save Chan		Save Chang	

Figure 9-140 PID control loop setup, analogue output

9.2.7.3.3 Operation

Parameters related to the operation of the control loop shown on the picture below (single loop controller).

PID1 FIC-101 Operation		PID1 FIC-101 Operation	
A/M mode	auto	A/M mode	auto
Setpoint mode	local SP	Setpoint mode	local SP
Setpoint tracking	enabled	Setpoint tracking	enabled
Control action	reverse	Control action	reverse
Process variable mode	input signal	Process variable mode	flow rate
Input signal	2 IO 1 ch.	Stream number	1
Remote setpoint	input signal	Flowrate	CVOL flowrate
Input signal	2 IO 4 ch.	Flow rate URL	1000000 m³/h
Local setpoint	20000 m³/h	Remote setpoint	modbus
Setpoint max. ROC	5.00 %/s	Local setpoint	20000 m³/h
		Setpoint max. ROC	5.00 %/s
Save Change		Save Change	

Figure 9-141 PID control loop setup, operation, single loop

A/M mode

Auto/Manual mode of the control loop. Selected from list:

	- auto; - manual;
Setpoint mode	Setpoint selection. Selected from list: - local SP - remote SP
Setpoint tracking	Enable/disable setpoint tracking. Selected from list: - enabled - disabled If setpoint tracking is enabled, then: - in Manual mode the local setpoint follows the process variable; - in Auto mode the manual output value follows the controller output; - in Remote setpoint mode the local setpoint follows the remote setpoint.
Control action	Selected from list: - forward (in case of positive error (= PV – SP) controller output signal increases, in case of negative error, decreases); - reverse (in case of positive error (= PV – SP) controller output signal decreases, in case of negative error, increases);
Process variable mode	Selected from list: - measured (IO board, channel); measured X IO Y ch. - flow rate (of the selected stream); STR X (stream selected from list from 1 to 12) Stream parameter (selected from list) - UVOL flow rate; - CVOL flow rate; - Mass flow rate; - Energy flow rate; Flow rate upper range limit (numeric entry)
Remote setpoint mode	Selected from list: - measured (IO board, channel); measured X IO Y ch. - Modbus register (see Modbus register map in 13.6.4.);
Setpoint	Local setpoint, numeric entry.
Setpoint max. ROC	Maximum rate of change of the setpoint, in %/s. The new local or remote setpoint will reach its final value with this maximum ROC. For example in case of 1 %/s ROC, entering new setpoint value 80 % instead of old value 40 %, the setpoint will change from 40 % to 80 % in 40 seconds.

Parameters related to the operation of the control loop shown on the picture below (dual loop controller).

PID8 FIC/PIC-18 Operation	PID8 FIC/PIC-18 Operation
A/M mode manual	Inputsignal 2 IO 3 ch.
Setpoint mode local SF	Rem. SP/Poutmax/Pinmin modbus
Setpoint tracking enabled	Local SP / Poutmax / Pinmin 54.99 bar
Flow direction mode automatic	Setpoint max. ROC 5.00 %/s
PIC control loop	FIC control loop
Control action reverse	Control action reverse
PV mode (+) flow dir. input signal	PV mode (+) flow dir. input signal
Inputsignal 2 IO 2 ch.	Inputsignal 2 IO 1 ch.
PV mode (-) flow dir. input signal	PV mode (-) flow dir. input signal
Inputsignal 2 IO 3 ch.	Inputsignal 2 IO 4 ch.
Rem. SP/Poutmax/Pinmin modbus	Remote SP / qmax modbus
Local SP / Poutmax / Pinmin 54.99 ba	r_LocalSP/qmax20000 m³/h
Setpoint max. ROC 5.00 ×/s	Setpoint max. ROC 5.00 ×/s
Save Change 🗸 🗸	Save Change

Figure 9-142 PID control loop setup, operation, dual loop

A/M mode	Auto/Manual mode of the control loop. Selected from list: - auto; - manual;
Setpoint mode	Setpoint selection. Selected from list: - local (SP) - remote (RSP)
Setpoint tracking	Enable/disable setpoint tracking. Selected from list: - enabled - disabled If setpoint tracking is enabled, then: - in Manual mode the local setpoint follows the process variable; - in Auto mode the manual output value follows the controller output; - in Remote setpoint mode the local setpoint follows the remote setpoint.
Flow direction mode	 Method of determination of the flow direction (only in dual loop bidirectional controller). Selected from list: - automatic (if the volume flow rate >0 in the metering stream for the (+) direction flow then flow direction is considered positive. If the volume flow rate >0 in the metering stream for the (-) direction flow then flow direction is considered negative. If the flow rate = 0 then flow direction is considered as last valid direction); - fixed manual (+) direction; - fixed manual (-) direction is determined by the content of certain Modbus registers. See 13.6.4. for the Modbus map. If register content = 1, positive direction, if register content = 2, negative direction.
PIC loop Control action	Selected from list (not alterable in dual loop controller) - forward (in case of positive error (= PV – SP) controller output signal increases, in case of negative error, decreases) – fixed for inlet pressure control;

	 reverse (in case of positive error (= PV – SP) controller output signal decreases, in case of negative error, increases) – fixed for outlet pressure control;
PIC loop Process variable mode for (+) flow direction	Selected from list (not alterable) - measured (IO board, channel); measured XIO Y ch.
PIC loop Process variable mode for (-) flow direction	Selected from list (not alterable) - measured (IO board, channel); measured XIO Y ch.
PIC loop Remote setpoint/Poutmax /Pinmin mode	 Selected from list: measured (IO board, channel); measured X IO Y ch. Modbus register (see Modbus register map in 13.6.4.);
PIC loop Setpoint	Local setpoint, numeric entry.
PIC loop Setpoint max. ROC	Maximum rate of change of the setpoint, in %/s. The new local or remote setpoint will reach its final value with this maximum ROC. For example in case of 1 %/s ROC, entering new setpoint value 80 % instead of old value 40 %, the setpoint will change from 40 % to 80 % in 40 seconds.
FIC loop Control action	Selected from list (not alterable in dual loop controller) - reverse (in case of positive error (= PV – SP) controller output signal decreases, in case of negative error, increases) – fixed for flow rate control;
FIC loop Process variable mode for (+) flow direction	Selected from list: - measured (IO board, channel); measured X IO Y ch. - flow rate (of the selected stream); STR X (stream selected from list from 1 to 12) Stream parameter (selected from list) - UVOL flow rate; - CVOL flow rate; - Mass flow rate; - Energy flow rate; Flow rate upper range limit (numeric entry)
FIC loop Process variable mode for (-) flow direction	Selected from list: - measured (IO board, channel); measured X IO Y ch. - flow rate (of the selected stream); STR X (stream selected from list from 1 to 12) Stream parameter (selected from list) - UVOL flow rate; - CVOL flow rate; - Mass flow rate; - Energy flow rate;

	Flow rate upper range limit (numeric entry)
FIC loop Remote setpoint/qmax mode	Selected from list: - measured (IO board, channel); measured X IO Y ch. - Modbus register (see Modbus register map in 13.6.4.);
FIC loop Setpoint/qmax	Local setpoint, numeric entry.
FIC loop Setpoint max. ROC	Maximum rate of change of the setpoint, in %/s. The new local or remote setpoint will reach its final value with this maximum ROC. For example in case of 1 %/s ROC, entering new setpoint value 80 % instead of old value 40 %, the setpoint will change from 40 % to 80 % in 40 seconds.

9.2.7.3.4 Fault handling

Fault handling is set up on the screen below. Screen is identical for single and dual loop controller.

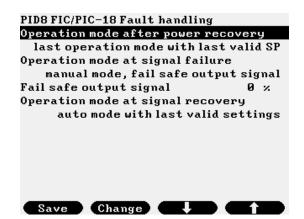


Figure 9-143 PID control loop setup, fault handling

Operation mode after power recovery	Desired operation mode when power recovered after power failure. Selected from list: - manual mode; - last operation mode with local setpoint; - last operation mode with last valid setpoint;
Operation mode at signal failure	 Desired operation mode when process variable and/or setpoint signal fails (invalid). Selected from list: manual mode, last valid output signal; manual mode, fail safe output signal; Output signal fail safe value in % (numeric entry)
Operation mode at signal recovery	Desired operation mode when failed process variable and/or setpoint signal recovered. Selected from list: - manual mode; - automatic mode with last valid settings;

9.2.7.3.5 Tuning

Data entry screens for tuning parameters are shown on the picture below for single loop and dual loop controllers.

	PID1 FIC-	101 Tuning						
	Kp1	_		0.06				
	Ti1			4	s			
	Td1			0	s			
	KpZ			0.12				
	Ti2			2	s			
	Td2			0	s			
	Kp1Ti1Td	1/Kp2Ti2Td	2 switch	over no	le			
				opera	tor			
	Kp1Ti1Td	1/Kp2Ti2Td	2 select	Kp1Ti1	Td1			
	Integr.d	isabl. low l	imit	0	×			
	Integr.d	isabl. high	limit	100	×			
	Save	Change						
PID8 FIC/PIC-18	Tuning		PID8 FIC	C/PIC-18	Tunin	a		
PIC parameters			FIC para	ameters	:			
Kp1		1.2	Kp1				0.06	
Ti1		12 s	Ti1				4	S
Td1		0 s	Td1				0	S
Kp2		2	KpZ				0.2	
Ti2		2 s	Ti2				2	S
Td2		0 s	Td2				-	S
	'i2Td2 switch ov		-	•		switchc		
	above the swite					the swi		
Kp1Ti1Td1/Kp2T		Kp1Ti1Td1	-	d1/Kp2T		select	Kp1Ti1	Td1
PV switch over		48.2 -		ch over			00000	-
Integr.disabl.		0 ×	-	disabl.			0	×
Integr.disabl.	high limit	100 %		disabl.	high li	mit	100	%
Save			Save					

Figure 9-144 PID control loop setup, tuning

For single loop controller tuning parameters are according to table below. For dual loop controller tuning parameters are the same but there are separate set of parameters for FIC loop and PIC loop.

Kp1	Gain in tuning set No.1
Ti1	Integration time in tuning set No.1
Td1	Derivative time in tuning set No.1
Kp2	Gain in tuning set No.2
Ti2	Integration time in tuning set No.2
Td2	Derivative time in tuning set No.2
Kp1Ti1Td1/Kp2Ti2Td2 switch over mode	Switch over mode between tuning set No.1 and No.2. Selected from list: - disabled (no switch over, tuning set No.1 in use); - operator (operator selects the tuning set in use);

	 automatic above the switch over setpoint (tuning set No.2 selected automatically if setpoint is above the given limit); automatic above the switch over process variable (tuning set No.2 selected automatically if process variable is above the given limit));
Kp1Ti1Td1/Kp2Ti2Td2 selection	Tuning set. Selected from list: - Kp1Ti1Td1; - Kp2Ti2Td2;
SP/PV switch over value	PV or SV limit for automatic switch over between tuning set No.1 and No.2
Integration term disabling low limit	Integration term is disabled below this limit of the controller output signal, $\%$
Integration term disabling high limit	Integration term is disabled above this limit of the controller output signal, $\%$

9.2.7.4 Operation of the PID control

The screen for operation of the PID control is accessible via path Main menu / Flow / PID as shown on the picture below.

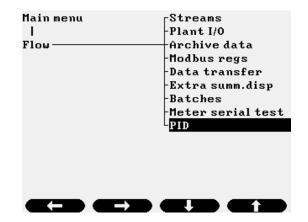


Figure 9-145 Accessing PID control operation screen

After entering into menu select the required PID control loop from PID1 to PID8 by pressing Change button. If inactive PID loop is selected then message shown on the picture below will be displayed.

PID3
This control loop is inactive!
Menu Change

Figure 9-146 PID control operation, control loop inactive screen

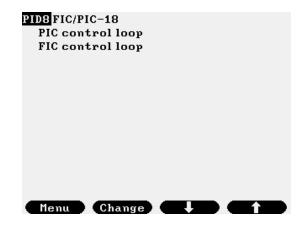
Selecting active PID loop and pressing OK the operational screen of the PID loop is displayed.

9.2.7.4.1 Operation of single loop controller

Operational screen of the single loop controller shown on the picture below.

PID1 FIC-101	
Loop identifier	FIC-101
Process variable	20001 m³/h
Setpoint in use	20000 m³/h
Output signal in use	29.22 ×
A/M mode	auto
Setpoint mode	local SP
Local setpoint	20000 m³/h
Remote setpoint	60051 m³/h
Output signal calcul-ed	29.22 ×
Manual output signal	29.22 ×
Rem. manual output sign.	0.00 ×
Tuning set in use	Kp1Ti1Td1
Error status	
Menu Change	

Figure 9-147 PID control operation, single loop controller


Items displayed on the screen are as follows:

Process variable	Current value of the process variable measured on the input channel or calculated in the metering stream.
Setpoint in use	Value of the setpoint used in control (local or remote, depending on the setpoint mode).
Output signal in use	Output signal of the control loop going to the analog output.
A/M mode	Auto/Manual mode of the controller, selected from the list: - auto; - manual
Setpoint mode	Setpoint mode selection. Selected from list: - local (SP)

	- remote (RSP)
Local setpoint	Entry field for local setpoint. If setpoint mode is set to remote and setpoint tracking is enabled then local setpoint follows the remote setpoint.
Remote setpoint	Indicates the value of the remote setpoint received on input channel or in Modbus register
Output signal calculated	The calculated value of the controller output signal.
Output signal manual	Entry field for the output signal. In manual mode it will be the in use output signal. In auto mode, if setpoint tracking is enabled, it follows the calculated value of the output signal.
Output signal remote manual	Manual value of the output signal written via Modbus register. Valid if output remote manual mode is enabled If the PID loop in manual mode, then output signal can be modified writing the desired output signal value into the dedicated Modbus register. See Modbus register map in 13.6.4. The value written into the Modbus register must differ from the previous value of the register to be transferred to the output.
Tuning set in use	The tuning parameter set currently in use. Selected from list: - Kp1Ti1Td1; - Kp2Ti2Td2.
Error status	Error status of the PID loop. Valid error status: - no error - PV invalid - SP invalid

9.2.7.4.2 Operation of dual loop controller

In case of dual loop controller there are separate operational screen for the FIC loop and PIC loop. After selecting the desired loop (FIC or PIC) and pressing \Rightarrow button the operational screen of the selected loop will be displayed.

The operational screen of the PIC loop is shown on the picture below.

PID8 FIC/PIC-18	PIC loop	PID8 FIC/PIC-18	PIC loop
Loop identifier	FIC/PIC-18	PIC process variable	54.99 bar
Dual PID loop type	Pout/max-qmax/q	PIC setpoint in use	54.99 bar
Flow direction	(+) direction	Output signal in use	25.00 ×
PIC process variable	54.98 bar	Output signal mode	manual
PIC setpoint in use	54.98 bar	A/M mode	manual
Output signal in use	25.00 ×	Setpoint mode	local SP
Output signal mode	manual	Local SP / Poutmax / Pinmin	54.99 bar
A/M mode	manual	Rem. SP/Poutmax/Pinmin	0.00 bar
Setpoint mode	local SP	Output signal calcul-ed	25.00 ×
Local SP / Poutmax / Pinm	in 54.98 bar	Manual output signal	25.00 ×
Rem. SP/Poutmax/Pinmin	0.00 bar	Rem. manual output sign.	0.00 ×
Output signal calcul-ed	25.00 ×	Tuning set in use	Kp1Ti1Td1
Manual output signal 🔄	25.00 ×	Error status	

Figure 9-149 P	PID control op	peration, dual	loop controller,	PIC loop
----------------	----------------	----------------	------------------	----------

Dual PID loop type	The control task selected during the set up for the dual loop controller (Pout/max – qmax/q or Pin/min – qmax/q) not alterable here.
Flow direction	Current flow direction, positive (+) or negative (-) indicated. Not alterable here.
PIC process variable	Current value of the process variable measured on the input channel
PIC setpoint in use	Value of the setpoint used in control (local or remote, depending on the setpoint mode).
Output signal in use	Output signal of the dual control block going to the analog output.
Output signal mode	Indicates which control loop calculated output signal goes to the output of the control block. Valid values are: PIC (if the calculated output signal of the PIC loop is in use) FIC (if the calculated output signal of the FIC loop is in use) Manual (if control loop in manual mode
A/M mode	Auto/Manual mode of the controller, valid for both PIC and FIC loop, selected from the list:

	- auto; - manual.
Setpoint mode	Setpoint mode selection. Selected from list: - local (SP) - remote (RSP)
Local setpoint/Poutmax/ Pinmin	Entry field for local setpoint. In case of Pout/max – qmax/q control, value of the Poutmax In case of Pin/min – qmax/q control, value of the Pinmin If setpoint mode is set to remote and setpoint tracking is enabled then local setpoint follows the remote setpoint.
Remote setpoint/Poutmax/Pinmin	Indicates the value of the remote setpoint received on input channel or in Modbus register. In case of Pout/max – qmax/q control, value of the Poutmax In case of Pin/min – qmax/q control, value of the Pinmin
Output signal calculated	The calculated value of the PIC loop output signal.
Output signal manual	Entry field for the output signal. In manual mode it will be the in use output signal. In auto mode, if setpoint tracking is enabled, it follows the calculated value of the output signal.
Output signal remote manual	 Manual value of the output signal written via Modbus register. Valid if output remote manual mode is enabled. If the PID loop in manual mode, then output signal can be modified writing the desired output signal value into the dedicated Modbus register. See Modbus register map in 13.6.4. The value written into the Modbus register must differ from the previous value of the register to be transferred to the output.
Tuning set in use	The tuning parameter set currently in use in the PIC loop. Selected from list: - Kp1Ti1Td1; - Kp2Ti2Td2.
Error status	Error status of the PIC loop. Valid error status: - no error - PV invalid - SP invalid

The operational screen of the FIC loop is shown on the picture below.

PID8 FIC/PIC-18	FIC loop	PID8 FIC/PIC-18	FIC loop
Loop identifier	FIC/PIC-18	FIC process variable	19995 m ³ /h
Dual PID loop type	Pout/max-qmax/q	FIC setpoint in use	19995 m³/h
Flow direction	(+) direction	Output signal in use	25.00 ×
FIC process variable	20000 m³/h	Output signal mode	manual
FIC setpoint in use	20000 m³/h	A/M mode	manual
Output signal in use	25.00 ×	Setpoint mode	local SP
Output signal mode	manual	Local SP / qmax	19995 m³/h
A/M mode	manual	Remote SP / qmax	0 m³/h
Setpoint mode	local SP	Output signal calcul-ed	25.00 ×
Local SP / qmax	20000 m³/h	Manual output signal	25.00 ×
Remote SP / qmax	0 m³/h	Rem. manual output sign.	0.00 ×
Output signal calcul-ed	25.00 ×	<u>Tuning set in u</u> se	Kp1Ti1Td1
M <u>anual ou</u> tput signal	25.00 ×	Error status	

Figure 9-150 PID control operation, dual loop controller, FIC loop

Dual PID loop type	The control task selected during the set up for the dual loop controller (Pout/max – qmax/q or Pin/min – qmax/q) not alterable here.		
Flow direction	Current flow direction, positive (+) or negative (-) indicated. Not alterable here.		
FIC process variable	Current value of the process variable measured on the input channel or calculated in the metering stream.		
FIC setpoint in use	Value of the setpoint used in control (local or remote, depending on the setpoint mode).		
Output signal in use	Output signal of the dual control block going to the analog output.		
Output signal mode	Indicates which control loop calculated output signal goes to the output of the control block. Valid values are: PIC (if the calculated output signal of the PIC loop is in use) FIC (if the calculated output signal of the FIC loop is in use) Manual (if control loop in manual mode		
A/M mode	Auto/Manual mode of the controller, valid for both PIC and FIC loop, selected from the list: - auto; - manual.		
Setpoint mode	Setpoint mode selection, valid for both PIC and FIC loop, selected from list: - local (SP) - remote (RSP)		
Local setpoint/qmax	Entry field for local setpoint. In case of Pout/max – qmax/q or Pin/min – qmax/q control, value of the qmax. If setpoint mode is set to remote and setpoint tracking is enabled then local setpoint follows the remote setpoint.		
Remote setpoint/qmax	Indicates the value of the remote setpoint received on input channel or in Modbus register. In case of Pout/max – qmax/q control Pin/min – qmax/q control, value of the qmax.		

Output signal calculated	The calculated value of the FIC loop output signal.
Output signal manual	Entry field for the output signal. In manual mode it will be the output signal in use.
	In auto mode, if setpoint tracking is enabled, it follows the calculated value of the output signal.
Output signal remote manual	Manual value of the output signal written via Modbus register. Valid if output remote manual mode is enabled. If the PID loop in manual mode, then output signal can be modified writing the desired output signal value into the dedicated Modbus register. See Modbus register map in 13.6.4. The value written into the Modbus register must differ from the previous value of the register to be transferred to the output.
Tuning set in use	The tuning parameter set currently in use in the FIC loop. Selected from list: - Kp1Ti1Td1; - Kp2Ti2Td2.
Error status	Error status of the FIC loop. Valid error status: - no error - PV invalid - SP invalid

9.2.7.5 Modbus register map of the PID control parameters

Uniflow-200 communication description see in Annex A. In this paragraph the Modbus register map related to PID control is described.

Table below gives the register addresses of the parameters which can be read or write via communication interface of Uniflow-200.

Meaning of letter X in the register addresses in the table:

X = 1 -for PID loop PID1 X = 2 -for PID loop PID2

•••

X = 8 -for PID loop PID8

There are 2 sets of register addresses in the table, "Standard Modbus" and "Daniel Modbus". If the communication with Uniflow-200 accomplished via serial port with port function set to "STD Modbus slave" or via Ethernet port with register assignment set to "STD Modbus" then "Standard Modbus" registers shall be addressed.

If the communication with Uniflow-200 accomplished via serial port with port function set to "Daniel Modbus slave" or via Ethernet port with register assignment set to "Daniel Modbus" then "Daniel Modbus" registers shall be addressed.

Changing the "modes" shall be dona writing the appropriate code into registers marked with rw (read/write).

Statuses shall be read from the registers marked with ro (read only).

				rw= read/write		
		Standard	Daniel	road/write		
Na	Description	Modbus	Modbus	read only	Nata	
No.	Description	register	register	int=16 bit	Note	
		address	address	integer		
				float=32 bit		
				float		
	A/M mode selection: 1 – auto, 2 – manual	15X00	15X00		For single	
	Setpoint mode selection: 1 – local, 2 - remote	15X01	15X01	int rw	loop control	
	Tuning set selection: 1 – PID1, 2 – PID2	15X02	15X02	int rw		
4	A/M mode selection: 1 – auto, 2 – manual (common for PIC and FIC)	15X03	15X03	int rw		
5	Setpoint mode selection: 1 – local, 2 – remote (common for PIC and FIC)	15X04	15X04	int rw		
6	Tuning set selection for PIC loop: 1 – PID1, 2 - PID2	15X05	15X05	int rw	For dual loop control	
7	Tuning set selection for FIC loop: 1 – PID1, 2 - PID2	15X06	15X06	int rw		
8	Flow direction: 1 – (+)positive, 2 - (-)negative	15X07	15X07	int rw		
9	PID loop status: 1 – active, 2 – inactive	15X08	15X08	int ro		
10	PID loop type: 1 – single loop, 2 – dual loop unidirectional, 3 – dual loop bidirectional	15X09	15X09	int ro	General	
	Dual PID loop type: 1 - Pout/max – qmax/q, 2 - Pin/min – qmax/q	15X10	15X10	int ro	settings	
12	A/M mode status: 1 – auto, 2 - manual	15X11	15X11	int ro		
	Setpoint mode status: 1 – local, 2 - remote	15X12	15X12	int ro	L	
14	Tuning set status: 1 – PID1, 2 – PID2	15X13	15X13	int ro	For single	
45	Error status (bitwise coded): bit0 – no error, bit1- PV invalid, bit2 – SP invalid	15X14	15X14	int ro	loop control	
16	A/M mode status: 1 – auto, 2 – manual (common for PIC and FIC)	15X15	15X15	int ro		
17	Setpoint mode status: 1 – local, 2 - remote	15X16	15X16	int ro		
18	Tuning set status for PIC loop: 1 – PID1, 2 – PID2	15X17	15X17	int ro		
	Tuning set status for FIC loop: 1 – PID1, 2 – PID2	15X18	15X18	int ro	For dual loop control	
20	Error status for PIC loop (bitwise coded): bit0 – no error, bit1- PV invalid, bit2 – SP invalid	15X19	15X19	int ro	CONTO	
21	Error status for FIC loop (bitwise coded): bit0 – no error, bit1- PV invalid, bit2 – SP invalid	15X20	15X20	int ro		
22	Flow direction status: 1 – (+)positive, 2 - (-)negative	15X21	15X21	int ro		
23	Remote set point	15X22	15700	float rw		
23		15X23	15X22	nuatiw	For single	
	Output remote manual signal	15X24	45200	fleat	loop control	
24		15X25	15X23	float rw		
	PIC loop rempte setpoint/Poutmax/Pinmin	15X26	15X24	float rw	For dual loop	
			15X7/			

	not used	15X28	451/05	<i>a i</i>	
26		15X29	15X25	float rw	
07	FIC loop remote setpoint/qmax	15X30	451/00	(Leaf)	1
27		15X31	15X26	float rw	
	Output remote manual signal	15X32	451/07	<i>a</i> .	1
28		15X33	15X27	float rw	
	Process variable	15X34	(=) (= =		
		15X35	15X28	float ro	
	Setpoint in use	15X36	(=) (= =		1
30		15X37	15X29	float ro	
	Output signal in use	15X38	451/00		1
31		15X39	15X30	float ro	For single
	Local setpoint	15X40	451/04		loop control
32		15X41	15X31	float ro	
	Output signal calculated	15X42	451/00		1
33		15X43	15X32	float ro	
	Output signal manual	15X44	4.51/00		1
34		15X45	15X33	float ro	
	PIC loop process variable	15X46	451/04	()	
		15X47	15X34	float ro	
	PIC loop setpoint in use	15X48	45.005	flaat va	
36		15X49	15X35	float ro	
37	PIC loop output signal calculated	15X50	45,200	fleetre	
37		15X51	15X36	float ro	
38	PIC loop local setpoint	15X52	15X37	floot ro	
30		15X53	15/21	float ro	
39	PIC loop remote setpoint	15X54	15X38	float ro	1
39		15X55	10/20	100110	
40	FIC loop process variable	15X56	15X39	float ro	1
40		15X57	10/29	104110	For dual loop
41	FIC loop setpoint in use	15X58	15X40	float ro	control
41		15X59	13/40	noatio	
42	FIC loop output signal calculated	15X60	15X41	float ro	
42		15X61	13741	104110	
43	FIC loop local setpoint	15X62	15X42	float ro	
43		15X63	13/42	noatio	
44	FIC loop remote setpoint	15X64	15X43	float ro	
44		15X65	13/43	noatio	
45	Output signal in use	15X66	15X44	float ro	
		15X67	13/44	nual IU	
16	Output signal manual	15X68	15X45	float ro	
40		15X69	15/45	nual IU	

Table 9-15 Modbus register map of the PID control parameters

9.3 Alarms and events system

UNIFLOW-200 operates a comprehensive alarming and eventing system, a summary of which is described below.

Alarm is considered as a violation of a limit set in the flow computer by operator or by the calculation procedure implemented.

Event is considered any change in the parameter set of the flow computer.

When an alarm occurs, it causes:

- visual alarm indication (alarm LED on the front panel) flashing;
- digital alarm output activated;
- entry is added to the unacknowledged alarm list;
- entry is added to the alarm log (alarm set).

When operator acknowledges the alarm:

- it is moved from the unacknowledged alarm list to the acknowledged alarm list;
- alarm led is lit (not flashing);

When the limit violation causing the alarm disappears:

- alarm LED goes off;
- digital alarm output deactivated;
- alarm is cleared from the alarm list (from the acknowledged alarm list if it was acknowledged and from the unacknowledged alarm list if it was not acknowledged. Alarm system works on unlatched basis)
- entry is added to the alarm log (alarm cleared).

When any event appears:

- entry is added to event log indicating the name of the parameter modified, the old value and the new value of the parameter.

There is also a download log in the flow computer. It serves for archiving the natural gas composition downloaded to the flow computer from supervisory system via the Modbus link. Every time a new gas composition is received on the Modbus link the composition is stored in the download log as a new entry.

The alarm log, event log and download log content is not alterable.

9.3.1 I/O channel alarms

Alarm text	Description
IO/Ch Under range	Current < 3.5 mA. Alarm is cleared with hysteresis when current > 4 mA.
	In the range 3.5 mA < current < 4.0 mA current = 4.0 mA converted into
	engineering unit.
IO/Ch Over range	Current > 20.5 mA. Alarm is cleared with hysteresis when current < 20
	mA. In the range 20.0 mA < current < 20.5 mA the measured current is
	converted into engineering unit.
IO/Ch LoLo limit	Parameter in engineering unit < LoLo alarm limit
IO/Ch Lo limit	Parameter in engineering unit < Lo alarm limit
IO/ChHi limit	Parameter in engineering unit > Hi alarm limit
IO/ChHiHi limit	Parameter in engineering unit > HiHi alarm limit
IO/Ch channel failure	Channel data is failed to read
Str dP cut-off active	For differential pressure channel only.
	Measured dP < dP cut-off limit. dP = 0 assumed in flow calculation.
Str dP transmitter	For differential pressure channel only if two or three dP transmitters with
discrepancy	identical range is configured.
	Deviation between the differential pressures measured at different
	channels > deviation limit.

9.3.1.1 Analog input channel (4-20 mA) alarms

Differential pressure signal processing in different regions of the input signal is shown in the table below.

dP_max	 transmitter overload (I > 20.5 mA)
dP_HI_current	 transmitter upper range value (I = 20.0 mA)
dP_cut-off	 dP cut-off limit
dP_LO_current	 transmitter lower range value (I = 4.0 mA)
dP_min	 open input circuit (I < 3.5 mA)

dP range	Alarm	dP signal processing
0 < dP < dP_min	Under-range	No flow calculation
dP_min < dP < dP_LO_current	Under-range	No flow calculation
dP_LO_current < dP < dP_cut-off	dP cut-off active	dP = 0 assumed
dP_cut-off < dP < dP_HI_current	none	normal flow calculation
dP_HI_currnt < dP < dP_max	none	normal flow calculation
dP_max < dP	Over-range	dp = dP_max assumed, fault
		totals

NOTE

It is operator selectable in the signal setup menu if the under range, over range and Lo, LoLo, Hi, HiHi limits shall generate alarm or not.

Alarm text	Description
IO/Ch Under range	Temperature < LO_scale.
IO/Ch Over range	Temperature > HI_scale.
IO/Ch LoLo limit	Temperature < LoLo alarm limit
IO/Ch Lo limit	Temperature < Lo alarm limit
IO/ChHi limit	Temperature > Hi alarm limit
IO/ChHiHi limit	Temperature > HiHi alarm limit

9.3.1.2 PRT/RTD (Pt100) channel alarms

NOTE

It is operator selectable in the signal setup menu if the under range, over range and limits shall generate alarm or not.

Alarm text	Description
Str flowrate cut-off	UVOL flowrate < cut-off flowrate
active	
Str flowrate below qmin	UVOL flowrate < qmin flowrate
IO/Ch LoLo limit	UVOL flowrate < LoLo alarm limit
IO/Ch Lo limit	UVOL flowrate < Lo alarm limit
IO/ChHi limit	UVOL flowrate > Hi alarm limit
IO/ChHiHi limit	UVOL flowrate > HiHi alarm limit
Str flowrate above	UVOL flowrate > qmax flowrate
qmax	
Str meter overload	UVOL flowrate > tm * qmax flowrate
Str meter critical	UVOL flowrate > 1.5 * tm * qmax flowrate
overload	

where *tm* is the maximum overload set in the signal setup menu

Pulse input signal processing in different regions of the input signal is shown in the table below.

1.5 * tm * q_max tm * qmax qmax	{ 	 critical overload flowrate maximum overload flowrate maximum UVOL flowrate
qmin q_cut-off 0		minimum UVOL flowrate cut-off UVOL flowrate no flow

UVOL FR range	Alarm	Signal processing
0 < UVOL FR < q_cut-off	flowrate cut-off active	No flow totalization

q_cut-off < UVOL FR < qmin	under range	Fault totals
qmin < UVOL FR < qmax	none	Normal flow calculation
qmax < UVOL FR < tm * qmax	over range	Fault totals
tm * qmax < UVOL FR < 1.5 * tm * qmax	overload	Fault totals
1.5 * tm * qmax < UVOL FR	critical overload	1.5 * tm * qmax flowrate
		assumed, fault totals

The flowrate is calculated in any cases independently on that if the totalization is allowed or not.

NOTE

It is operator selectable in the signal setup menu if the Lo, LoLo, Hi, HiHi limits shall generate alarm or not.

9.3.1.4	Pulse input channel (flow frequency signal) alarms
---------	--

Alarm text	Description
Alarm text	Description
IO/Ch Under range	Frequency < LO_frequency
IO/Ch Over range	Frequency > HI_frequency
IO/Ch LoLo limit	Parameter in engineering unit < LoLo alarm limit
IO/Ch Lo limit	Parameter in engineering unit < Lo alarm limit
IO/ChHi limit	Parameter in engineering unit > Hi alarm limit
IO/ChHiHi limit	Parameter in engineering unit > HiHi alarm limit

NOTE

It is operator selectable in the signal setup menu if the under range, over range and Lo, LoLo, Hi, HiHi limits shall generate alarm or not.

Alarm text	Description
IO/Ch Under range	Parameter in engineering unit < LO_scale
IO/Ch Over range	Parameter in engineering unit > HI_scale
IO/Ch LoLo limit	Parameter in engineering unit < LoLo alarm limit
IO/Ch Lo limit	Parameter in engineering unit < Lo alarm limit
IO/ChHi limit	Parameter in engineering unit > Hi alarm limit
IO/ChHiHi limit	Parameter in engineering unit > HiHi alarm limit

NOTE

It is operator selectable in the signal setup menu if the under range, over range and Lo, LoLo, Hi, HiHi limits shall generate alarm or not.

Alarm text	Description
IO/Ch Under range	Parameter in engineering unit < LO_scale
IO/Ch Over range	Parameter in engineering unit > HI_scale
IO/Ch LoLo limit	Parameter in engineering unit < LoLo alarm limit
IO/Ch Lo limit	Parameter in engineering unit < Lo alarm limit
IO/ChHi limit	Parameter in engineering unit > Hi alarm limit
IO/ChHiHi limit	Parameter in engineering unit > HiHi alarm limit

9.3.1.6 Analog output (4-20 mA) channel alarms

NOTE

It is operator selectable in the signal setup menu if the under range, over range and Lo, LoLo, Hi, HiHi limits shall generate alarm or not.

9.3.1.7 Pulse output channel alarms

Alarm text	Description
IO/Ch Pulse output	Number of pulses to be output > 10 sec * max. output frequency
overload	

This alarm may appear if a digital output is configured to output pulses proportional to total and the K-factor (volume/pulses) is improperly set. If the number of accumulated pulses to be output is more then the number of pulses the flow computer capable to output at maximum frequency during 10 seconds then pulse output overload alarm appears.

9.3.1.8 Modbus (serial communication) channel alarms

Alarm text	Description
Str data update timeout	No new data is received within the timeout time.

This alarm appears if the Modbus channel signal is not updated (not written by external device) within the timeout time specified in the signal setup menu for that channel.

9.3.2 Metering stream alarms

9.3.2.1 Calculation alarms

This type of alarms related to the calculation algorithm implemented for particular flow calculation. The alarms and the consequences in the flow calculation listed in the table below.

Alarm text	Cause of alarm	Consequences	
Gas composition	The total of the natural gas component	Alarm and keypad composition	
out of range	concentrations received on Modbus link is	is used in the calculation	
	outside the 95 105 % range		
Gas quality out of	One or more component concentration is	Alarm but the calculation	
range	outside the range defined in the calculation	proceeds.	
	standard (e.g. AGA8).		
Gas quality out of	One or more component concentration is	Alarm and the calculation	
extended range	outside the extended range defined in the	proceeds.	
	calculation standard (e.g. AGA8).		
Turbine input error	Error in the main and check pulse train	Alarm but the calculation	
	ratio.	proceeds.	
dP/P ratio out of	The dP/P ratio out of the range determined	Alarm but the calculation	
range	by the standard.	proceeds.	
Pipe diameter out	The pipe diameter out of the range	Alarm but the calculation	
of the range	determined by the standard.	proceeds.	
Orifice diameter	The orifice diameter out of the range	Alarm but the calculation	
out of the range	determined by the standard.	proceeds.	
Beta ratio out of	The beta ration out of the range	Alarm but the calculation	
the range	determined by the standard.	proceeds.	
¥			
Reynolds number	The Reynolds number out of the range	Alarm but the calculation	
	The Reynolds number out of the range determined by the standard.	Alarm but the calculation proceeds.	
Reynolds number	determined by the standard. No convergence is reached in the ISO		
Reynolds number out of the range ISO5167 calculation fail	determined by the standard. No convergence is reached in the ISO 5167 calculation within 10 iterative cycle.	proceeds. Alarm and the calculation stops.	
Reynolds number out of the range ISO5167	determined by the standard. No convergence is reached in the ISO	proceeds. Alarm and the calculation	

I/O channel signal representing flow (for example differential pressure or pulse input from turbine meter) has no keypad value. In case of failure of this kind of signals the flow calculation is stopped.

I/O signal other then flow signal (for example pressure or temperature) has keypad value. In case of failure of this kind of signal the flow calculation is continued with the keypad value of the signal.

The complete list of alarms and events listed in 9.3.4.

9.3.2.2 Stream fault alarm

This is a common alarm for the stream.

If any of the stream related alarm(s) (see list in the 9.3.4.) is active, the stream fault alarm will be activated and entry into the alarm log will be registered.

Stream fault alarm can be assigned to any digital output so that the status of the digital output will indicate presence of the stream fault alarm.

9.3.3 Common alarm and status output

Common alarm

A common alarm is defined in UNIFLOW-200.

If any of the I/O or metering stream alarm is active then the common alarm becomes active as well. The common alarm can be assigned to a digital output channel providing alarm signal for external devices.

The alarm LED on the front panel and the common alarm output change their state as indicated in the table below.

Common alarm	Alarm LED	Alarm output
unacknowledged alarm exists	flashing red	open(*)
acknowledged alarm only exists	constant red	open(*)
no alarm	not lit	closed(*)

(*) The digital output can be configured to be normally open or normally closed.

9.3.3.1 Status output

The run LED on the front panel and the change over voltage free contact output is provided to signal the operational status/fault of the flow computer.

The run LED and the status output change their state as indicated in the table below.

Flow computer status	RUN LED	Status output	
		In operation output	In fault output
Operating	lit	closed	open
Faulty	not lit	open	closed

9.3.4 Alarm list

Potential alarms in UNIFLOW-200 are listed in the table below. Entry is created in the **alarmlog.txt** file when any of these alarms appear (SET), acknowledged (ACK) and disappear (CLR).

I/O Channel related alarms

No.	Prefix	Alarm	Description
1	IOn/Chm	Data update timeout	No new data is received within the timeout time.
2	IOn/Chm	Hi limit	Measured value > Hi alarm limit
3	IOn/Chm	HiHi limit	Measured value > HiHi alarm limit

4 IOn/Chm	IO channel failure	Channel data is failed to read
5 IOn/Chm	Lo limit	Measured value < Lo alarm limit
6 IOn/Chm	LoLo limit	Measured value < LoLo alarm limit
7 IOn/Chm	Over range	Measured value > Hi scale
8 IOn/Chm	Pulse input overload	Measured frequency > 12 kHz
9 IOn/Chm	Pulse output overload	Pulses to be output requires more then 10 s
10 IOn/Chm	Under range	Measured value < Lo scale

Stream related alarms

No.	Prefix	Alarm	Description
1	Strn	AGA8 calculation fail	No convergence is reached in the AGA 8 calculation within 10 iterative cycles.
-	? Strn	AGA8 extended over-range	Gas composition out of the extended AGA8 range
	Strn	AGA8 over-range	Gas composition out of the AGA8 range
	Journ	AGAO Over-range	Base density out of the range determined by the
4	Strn	Base density out of range	standard
		, ,	The beta ratio out of the range determined by the
5	Strn	Beta ratio out of the range	standard.
6	5 Strn	Critical over load	UVOL flowrate > 1.5 * tm * qmax
_		·····	Volume at base conditions flow rate above premium
7	' Strn	CVOL FR above prem.limit	limit
c	Strn	CVOL ED above promilimit	Volume at base conditions flow rate premium limit
-) Strn	CVOL FR above prem.limit Densitometer error	warning
5	Joun	Densitometer enor	Error in densitometer signal No convergence is reached in the density calculation
10) Strn	Density calculation fail	within 10 iterative cycles.
-	Strn	Density converg error	Density calculation convergence error
	••••		Deviation between the densities measured in two
12	2 Strn	Density discrepancy	densitometers > deviation limit.
13	8 Strn	dP cut-off active	Measured dP < dP cut-off limit
			Deviation between the differential pressures
14	Strn	dP transmitter discrepancy	measured at different channels > deviation limit.
16	Ctro	dD/D ratio out of range	The dP/P ratio out of the range determined by the
	5 Strn	dP/P ratio out of range	standard
-	5 Strn	Dynamic viscosity error	Dynamic viscosity error
	' Strn	ENGY FR above prem.limit	Energy flow rate above premium limit
	8 Strn	ENGY FR above prem.limit	Energy flow rate premium limit warning
19) Strn	Flowrate cut-off active	0 < UVOL flowrate < q_cut-off
			The total of the natural gas component concentrations received on Modbus link is outside
20) Strn	Gas composition out of range	
20	Jun	Cus composition out of range	

21 Strn	Gas quality out of extended range	One or more component concentration is outside the extended range defined in the calculation standard (e.g. AGA8). One or more component concentration is outside the range defined in the calculation standard (e.g.
22 Strn	Gas quality out of range	AGA8). No new gas composition data is received within the
23 Strn	Gas quality update timeout	timeout time.
24 Strn	Increment OOR	Integration increment out of range
25 Strn	Invalid fluid	Invalid fluid selection
		No convergence is reached in the ISO 5167
26 Strn	ISO5167 calculation fail	calculation within 10 iterative cycles.
27 Strn	Joule-Thomson Err.	Joule-Thomson coefficient calculation error
28 Strn	Line dens. error	Line density error
29 Strn	Mass FR above prem.limit	Mass flow rate above premium limit
30 Strn	Mass FR above prem.limit	Mass flow rate premium limit warning
31 Strn	Modbus slave error	Modbus slave error
32 Strn	NGL/LPG Consistency Error	NGL/LPG calculation consistency error
33 Strn	NGL/LPG Ctl Error	NGL/LPG Ctl error
34 Strn	NGL/LPG Ctl iteration Error	NGL/LPG Ctl iteration error
35 Strn	NGL/LPG Gamma60 Error NGL/LPG Gamma60 iteration	NGL/LPG calculation gamma60 error
36 Strn	Error	NGL/LPG calculation gamma60 iteration error
37 Strn	NGL/LPG range Error	NGL/LPG calculation range error
38 Strn	NGL/LPG Tr > Tc Error	NGL/LPG Tr > Tc error
	Orifice diameter out of the	The Orifice diameter out of the range determined by
39 Strn	range	the standard.
40 Strn	Out of range PT	Pressure and tempearture out of range
41 Strn	Over load	UVOL flowrate > tm * qmax (tm = max. load, %)
42 Strn	Over range	UVOL flowrate > qmax
43 Strn	P2/P ratio out of range	The P2/P ratio out of the range determined by the standard
45 000	1 2/1 Tallo out of range	The pipe diameter out of the range determined by
44 Strn	Pipe diameter out of the range	
45 Strn	Press. > Steam sat. press.	Pressure > Steam saturation pressure
46 Strn	Pressure extend OOR	Pressure out of extended range
47 Strn	Pressure OOR	Pressure out of range
		Failed to determine the type of refined product on
48 Strn	Product selection failure	the basis of base density
49 Strn	Pulse input error	Error in the main and check pulse train ratio.
50 Strn	Reynolds number out of the range	The Reynolds number out of the range determined by the standard

51 Strn	Steam calculation failed	Steam calculation failed
52 Strn	Steam calculation warning	Steam calculation warning
53 Strn	Steam sat. press. alarm	Steam saturation pressure alarm Differential pressure > structural maximum dP for
54 Strn	Structural dP overload Temperature out of extended	Annubar The temperature out of the extended range
55 Strn	range	determined by the standard The temperature out of the range determined by the
56 Strn	Temperature out of range	standard
57 Strn	Transmitter setting failure	Failed to set the transmitter range
58 Strn	Under range	UVOL flowrate < qmin Volume at line conditions flow rate above premium
59 Strn	UVOL FR above prem.limit	limit Volume at line conditions flow rate premium limit
60 Strn	UVOL FR above prem.limit	warning
61 Strn	VCR out of range	Volume correction factor out of range
62 Strn	Water not liquid	Error in water-steam phase calculation

9.3.5 Events list

Events in UNIFLOW-200 are listed in the table below. Entry is created in the **eventlog.txt** file when any of these events appear.

No. Prefix	Alarm	Description
1 date/time	Application software update	Application software updated
2 date/time	Date/time downloaded	Date/time updated via Modbus
		Daylight saving time period ended (European DST
3 date/time	DST off	rule is followed)
4 date/time	DST off failed	Failed to end daylight saving time period
		Daylight saving time period started (European DST
5 date/time	DST on	rule is followed)
6 date/time	DST on failed	Failed to start daylight saving time period
7 date/time	Engineer logged in	Operator at engineer password level logged in
		All the parameters, totals, alarms, event are cleared
8 Strn	General reset	for all streams
9 date/time	Guest logged in	Operator at guest password level logged in
10 date/time	IP address conflict	IP address conflict
11 Strn	New gas composition received	New gas composition received
12 date/time	no. of calc. cycles	Number of calculation cycles
13 date/time	Operator logged in	Operator at operator password level logged in
14 date/time	Parameter setup aborted	Parameter setup aborted
15 date/time	Parameter setup start	Operator entered Parameters menu
16 date/time	Parameter setup stop	Operator left Parameters menu

17 date/time	Power failure	Power failure or power off
18 date/time	Remote parameter setup	Parameters are modified via ethernet interface
19 Strn	Totals reset	Totals are cleared to the selected streams Flow computer restarted after power on or
20 date/time	Warm start	application download
21 date/time	Watchdog restart	Flow computer restarted from watchdog circuit

9.3.6 Download log

Gas composition downloaded into UNIFLOW-200 is stored in the **downloadlog.txt** file. The structure of the file is as follows.

In case of measuring natural gas using Modbus Daniel mode for the first stream:

Li	Modbus registers (Modb.	
n	Daniel): ;7001;7002;7003;7004;7005;7006;7007;7008;7009;7010;7011	
е	;7012;7013;7014;7015;7016;7017;7018;7019;7020;7021;7022;7023;7024;7025;7026;	
1.		
Li	Parameters: ;N2;CO2;H2S;H20;He;C1;C2;C3;nC4;iC4;nC5;iC5;nC6;nC7;nC8;nC9;nC10;O2;CO	;H2
n	;rRo;ICV;SCV;Ar;LD;BD;	
е		
2.		
Li	Timestamp Str1 ;gas composition data	
n		
е		
п.		

In case of measuring natural gas using Modbus STD1 mode for all streams:

Lin	Modbus registers (Modb.
e 1.	STD1): ;818;820;822;824;826;828;830;832;834;836;838;840;842;844;846;848;850;852;854;856;
	858;860;
Lin	Parameters: ;N2;CO2;H2S;H20;He;C1;C2;C3;nC4;iC4;nC5;iC5;nC6;nC7;nC8;nC9;nC10;O2 ;CO;H2;
e 2.	RD;ICV;
Lin	Timestamp Str1-8 ;gas composition data
e n.	

In case of mesuring natural gas using Modbus STD2 mode for the first stream:

Lin	Modbus registers (Modb.			
е	STD2): ;878;880;882;884;886;888;890;892;894;896;898;900;902 ;904;906;908;910;912;914;916;91			
1.	8;920;870;872;874;876;			
Lin	Parameters: ;N2;CO2;H2S;H20;He;C1;C2;C3;nC4;iC4;nC5;iC5;nC6;nC7;nC8;nC9;nC10;O2 ;CO;H2;R			
е	D;ICV;SCV;Ar;LD,BD			
2.				
Lin	Timestamp Str1 ;gas composition data			
е				
n.				

In case of mesuring coke oven gas using Modbus Daniel mode for the first stream:

1		
	Line 1.	Modbus registers (Modb.
		Daniel): ;7001;7002;7003;7004;7006;7007;7008;7018;7019;7020 ;7028;7029;
	Line 2.	Parameters: ;N2;CO2;H2S;H20;C1;C2;C3;O2;CO;H2;Ammonia;Benzene;
	Line n.	Timestamp Str1 ;gas composition data

In case of mesuring coke oven gas using Modbus STD2 mode for the first stream:

Line 1.	Modbus registers (Modb. STD2): ;878;880;882;884;888;890;892;912;914;916;1310;1312;
Line 2.	Parameters: ;N2;CO2;H2S;H20;C1;C2;C3;O2;CO;H2;Ammonia;Benzene;
Line n.	Timestamp Str1 ;gas composition data

In case of mesuring blast furnace gas using Modbus Daniel mode for the first stream:

Line 2. Parameters: ;N2;CO2;H20;CO;H2;

Line *n*. Timestamp Str1 ;gas composition data

In case of mesuring blast furnace gas using Modbus STD2 mode for the first stream:

	Parameters: ;N2;CO2;H20;CO;H2;
	Time a tamen Otul yang a sumu a siti an dat

Line *n*. | Timestamp Str1 ;gas composition data

9.4 Tests

The Test menu is intended for quick check of the I/O signals of the flow computer. Entering Tests menu does not interrupt the flow calculation of the metering streams however it may affect the output signals.

NOTE

Remove all the field output signal connectors from the flow computer before entering the Test menu. The test values of the output signals (current on the 4-20 mA output channel and state on the digital output channel) set in the Tests menu will appear on the output terminals of the flow computer. These artificial outputs may disturb the normal operation of the equipment connected to the flow computer.

There are separate data pages for each I/O board inserted. Information displayed on the data pages are shown on the figures below.

9.4.1 Tests – ANI4PT2 board

Route in the menu tree: Tests Board n.

where *n* number of slots the bard is inserted

Function of the F keys on the Tests – ANI4PT2 board data pages **Menu** returns to the parent menu

Tes	sts	-> :	1.b	oar	d –	ANI4	PT2	
1 c	h.:		9.	955	60	mĤ		
2 с	h.:	1	0.	951	59	mĤ		
3 с	h.:	1	2.	947	10	mĤ		
4 с	h.:	1	5.	775	49	mÂ		
5 с	h.:	10	7.	586	50	ohm		
6 с	h.:	10	8.	600	89	ohm		
	Boa	rd	tei	npe	rat	ure	38.25	i°C
								Menu

The current in mA and the resistance in Ohms are indicated for each channel. The temperature of the board inside the instrument case in also indicated.

9.4.2 Tests – ANI8 board

Route in the menu tree:						
Tests	Board n.					
where n	number of slots the	board is inserted				

Function of the F keys on the Tests – ANI8 board data pages **Menu** returns to the parent menu

				Menu
Boar	d temperatı	ıre	43.56	°C
8 ch.	11.01863	mÂ		
7 ch.	11.02454	mĤ		
бch.	11.01135	mĤ		
5ch.	11.02027	mĤ		
4 ch.	11.02443	mĤ		
3ch.	11.02280	mĤ		
2 ch.	11.02621	mĤ		
1 ch.	11.00966	mĤ		
Tests ->	1.board - A	NI8		

Figure 9-152 Tests – ANI8 board data page

The current in mA is indicated for each channel. The temperature of the board inside the instrument case in also indicated.

9.4.3 Tests – PT4 board

 Route in the menu tree:

 Tests
 Board n.

where *n* number of slots the bard is inserted

Function of the F keys on the Tests – PT4 board data pages **Menu** returns to the parent menu

Tests	-> 4.board -	PT4	
1 ch.:	119.24801	ohm	
2 ch.:	120.63384	ohm	
3 ch.:	119.39378	ohm	
4 ch.:	119.01228	ohm	
			Menu

Figure 9-153 Tests – PT4 board data page

The resistance in Ohms is indicated for each channel. The temperature of the board inside the instrument case in also indicated.

9.4.4 Tests – AODIO484 board

Route in the menu tree:TestsBoard n.where nnumber of slots the bard is inserted

Function of the F keys on the Tests - AODIO484 board data page

select the next field for editing

f select the previous field for editing

Change modify the selected data field

OK Confirm the selection

Menu returns to the parent menu

T 4 -	-> 5. board $- AODIO48$	14				
		54	Tests -> 5.board - AODIO484			
Analog outputs:				Dual state input	opened	
1 ch.	Analog output	12.800 mA	6ch.	Dual state input	opened	
2 ch.	Analog output	7.5728 mA	7 ch.	Dual state input	opened	
3ch.	Analog output	4.0000 mA	8ch.	Dual state input	opened	
4 ch.	Analog output	0.0000 mA	9ch.	Dual state input	opened	
Digita	l inputs:		10 ch.	Dual state input	opened	
5ch.	Dual state input	opened	11 ch.	Dual state input	opened	
6ch.	Dual state input	opened	12 ch.	Dual state input	opened	
7 ch.	Dual state input	opened	Digita	loutputs:		
8ch.	Dual state input	opened	13 ch.	Dual state output	opened	
9ch.	Dual state input	opened	14 ch.	Dual state output	opened	
10 ch.	Dual state input	opened	15 ch.	Dual state output	opened	
1 <u>1 ch.</u>	Dual state input	opened	1 <u>6</u> ch.	Dual state output	opened	
Men	u e		Men	u e i		

Figure 9-154 Tests – AODIO484 board data page

The current in mA is indicated for the analog output channels.

The state (opened or closed) is indicated for digital input and output channels.

Selecting analog output channel any current from 0 to 21 mA can be entered. UNIFLOW-200 drives the selected output to the set current.

Selecting digital output channel the state of the channel can be set to open or closed.

Leaving the data page UNIFLOW-200 restores the outputs to the value determined by the application.

9.4.5 Tests - PDIO484 board

Route in the menu tree:

Tests	Board n.	
where n	number of slots the	bard is inserted

Function of the F keys on the Tests - PDIO484 board data page

select the next field for editing

① select the previous field for editing

Change modify the selected data field

OK Confirm the selection

Menu returns to the parent menu

Tes	ts -> 3.h	oard - PDI048	4	Tests -> 3.board - PDI0484
Puls	e input:	s:		5ch. Dualstateinput opened
<u>Ch</u> .	Signal	Frequency	Pulse/Ref.	6ch. Dualstateinput opened
1	5V	0.061523	776	7 ch. Dualstate input opened
			1839335067	8ch. Dualstateinput opened
2	5V	0.061523	776	9ch. Dualstateinput opened
			1839333846	10 ch. Dual state input opened
3	5V	0.061523	776	11 ch. Dual state input opened
			1839334238	12 ch. Dual state input opened
4	5V	0.061523	776	Digital outputs:
			1839329983	13ch. Dualstate output opened
Digi	tal inpu	ts:		14 ch. Dual state output opened
5ch	. Dual	state input	opened	15 ch. Dual state output opened
6 ch	. Dual	state input	opened	16 ch. Dual state output opened
(M	enu			Menu

Figure 9-155 Tests – PDIO484 board data page

The frequency and the pulse counter for the main and check pulse inputs are indicated for the pulse input channels.

The state (opened or closed) is indicated for digital input and output channels.

Selecting digital output channel the state of the channel can be set to opened or closed.

Leaving the data page UNIFLOW-200 restores the outputs to the value determined by the application.

9.4.6 Tests - PITC4641 board

Route in the menu tree:TestsBoard n.where nnumber of slots the bard is inserted

Function of the F keys on the Tests – PITC4641 board data page

select the next field for editing

① select the previous field for editing

Change modify the selected data field

OK Confirm the selection

Menu returns to the parent menu

Tes	ts -> 4.1	ooard - PITC46	641	Tests -> 4.board - PITC4641
Puls	se input:	s:		Digital inputs:
Ch.	Signal	Frequency	Pulse/Ref.	5ch. Dualstateinput opened
1	5V	499.9997	46784	6ch. Dualstateinput opened
			3492046538	7 ch. Dualstate input opened
2	5V	499.9997	46780	8ch. Dualstateinput opened
			3492046538	9ch. Dualstateinput opened
3	5V	499.9997	46779	10 ch. Dual state input opened
			3492046538	Digital outputs:
4	5V	499.9997	47019	11 ch. Dual state output opened
			3497046591	12 ch. Dual state output opened
				13 ch. Dual state output opened
Fre	kv.kimer	net:		14 ch. Dual state output opened
	lenu			Menu C ID C ID

Figure 9-156 Tests – PITC4641 board data page

The frequency and the pulse counter for the main and check pulse inputs are indicated for the pulse input channels.

Frequ. output indicates the frequency passed from one of the pulse input channels to the raw pulse output channel. Active when one of the streams defined in the flow computer is selected for proving in the connecting prover computer. See in Uniflow-200 Prover Computer Instruction Manual.

The state (opened or closed) is indicated for digital input and output channels.

Selecting digital output channel the state of the channel can be set to opened or closed.

Leaving the data page UNIFLOW-200 restores the outputs to the value determined by the application.

9.5 Calibration

The Calibration menu is reserved for factory use and for use in the laboratory of the authority calibrating the flow computer. It is accessible with special password only.

9.5.1 Rosemount 3095 calibration

If Rosemount 3095 multivariable transmitter with Modbus protocol is connected to Uniflow-200 on one of the serial link and the measured parameters (differential pressure, pressure, temperature) are assigned to one of the metering streams, then the calibration of this transmitter can be initiated here. After entering the engineering level password the transmitter calibration display appears:

Route in the menu tree:

Calibration

Function of the F keys on the Calibration data page

select the next field for editing

む select the previous field for editing

Change modify the selected data field

OK Confirm the selection

Menu returns to the parent menu

Transm. calibration Stream selection	1
Sensors to calibrate	
DP diff.pressure	yes
Keypad value	500 mbar
SP static pressure	yes
Keypad value	55 bar
PT temperature	yes
Keypad value	12 °C
Start calibration	yes
OK Change	

Figure 9-157 Transmitter calibration display

Select the stream in which the signals measured by the transmitter are used.

Select the sensors to be calibrated (DP, SP, PT) and enter the Keypad values. Keypad values will be used in the flow calculation during the calibration. Enter 0 keypad value for DP to stop the flow calculation during the calibration.

Change Start calibration field to yes and press OK.

Message box appears on the display requiring that the Write protection jumper to be set to OFF position. With jumper in ON position Uniflow-200 will not start the calibration. If the jumper is in OFF position then the sensor calibration page appears on display.

Sensor calibration		
Stream selection	1	
Sensor selection	DP	
L0_scale	0	mbar
HI_scale	1000	mbar
damping	1.5	sec
Sensor calibration	no	
Reset to factory trim	no	
Change 🚺		î

Figure 9-158 Sensor calibration display

Select the sensor (DP, SP, PT) to be calibrated. The LO scale, HI scale value for the selected sensor will be displayed as defined in the Modbus signal definition section. If you modify the LO scale or HI scale value here, the modified values will be written to the Modbus signal parameters. The damping parameter value is read from the transmitter.

There is an option "Reset to factory trim" on the display, allowing to restore the sensor offset (zero) and slope (span) value to the factory default value.

To calibrate the selected sensor set the Sensor calibration command to yes and press OK. Message box appears requiring to apply LO scale value signal to sensor. The measured value of the signal is displayed in the message box.

Sensor calibration			
Stream selection	1		
Sensor selection	DP		
L0_scale	0 mbar		
HI_scale	1000 mbar		
damping	1.5 sec		
Apply offset (zero) to the transmitter input Ø.800 mbar Input applied and stable? <mark>yes</mark>			
OK Change	Cancel		

Figure 9-159 DP sensor offset calibration display

When the signal is applied and the reading is stable press OK. New message box appears confirming the successful setting of the transmitter offset.

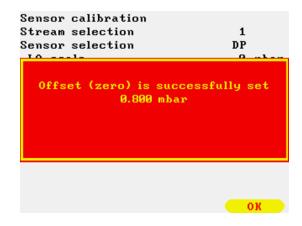


Figure 9-160 DP sensor offset calibration finished display

New message box appears requiring to apply HI scale value signal to sensor. The measured value of the signal is displayed in the message box.

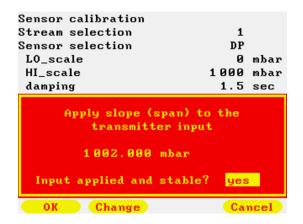


Figure 9-161 DP sensor slope calibration display

When the signal is applied and the reading is stable press OK. New message box appears confirming the successful setting of the transmitter slope (span).

Sensor calibration	
Stream selection	1
Sensor selection	DP
101-	0
Slope (span) is succes 1002.000 mbar	
	01
	UK

Figure 9-162 DP sensor slope calibration finished display

In the next message box the value of the sensor damping can be entered and written into the transmitter.

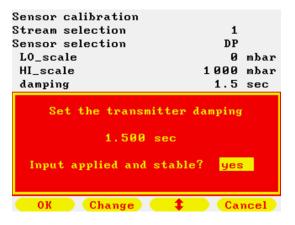


Figure 9-163 DP sensor damping display

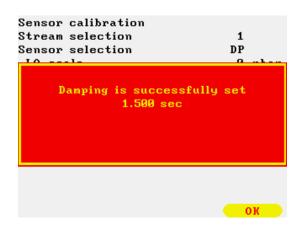


Figure 9-164 DP sensor damping finished display

After the offset (zero), the slope (span) and the damping was successfully set message box appears indicating the end of sensor calibration.

Sensor calibration Stream selection Sensor selection LO_scale	1 DP 0	mbar
Sensor calibration	n finished	
		ЭК

Figure 9-165 DP sensor calibration finished display

Repeat the above steps for the other sensors to be calibrated. After finishing the last sensor calibration message box appears indicating the end of calibration.

Transm. calibration S tream selection Sensors to calibrate	1
DP diff.pressure	yes
N	E00
Calibration #	finished
Start calibration	no
	OK

Figure 9-166 Calibration finished display

All the steps of the transmitter calibration are recorded in the Events archive.

9.6 Help

The contact details of the manufacturer (phone, fax, email address, website address) are available on this page.

9.7 Language/Nyelv/Язык/Limba

Route in the menu tree: Main Language/Nyelv/Язык/Limba.

Function of the F keys on the Language change data page **Change** Modify the language **OK** Confirm the selection

Menu Returns to the parent menu

This menu item is to change the working language of the flow computer. Highlighting the menu item and pressing key \Rightarrow language change display opens.

Language changed	
Language	Русский
OK Change	Menu

Figure 9-167 Language change display

Available languages are:

- English;
- Hungarian (Magyar);
- о Russian (Русский)
- o Român (Romanian)

After selecting the appropriate language and confirming the selection the flow computer completely change the working language.

The language change will change to the appropriate language:

- display text;
- entries in the alarm and event log and archive records;
- text on the reports;

Changing the working language will not affect the operation of the flow computer. The setup made in one language remains valid after the other display language is selected.

CAUTION

The records made in the alarm and event log and in the archive record files before the changing of the language will not be changed to other language.

However all the subsequent records will be done on the language activated.

It is recommended to make a general reset after the changing of the language setting. It will ensure to have single language records in the log files.

10 Communication

UNIFLOW-200 equipped with one 100 MHz Ethernet port and maximum of three serial communication ports (Com1, Com2, Cm3) allowing integration of the flow computer into data acquisition systems.

UNIFLOW-200 is the slave device in the communication. It means that UNIFLOW-200 can be gueried for data and it will respond if the gueried registers are defined. Metering data can be read from UNIFLOW-200 flow computer via standard RS232, RS485, RS422 serial link and via 10/100 Ethernet link.

Communication protocols implemented:

Com1, Com2, Com3 ports:	MODBUS
Ethernet port:	MODBUS over TCP

Modbus function codes implemented:

- 3 (0x03) read multiply registers
- 16 (0x10) write multiply registers

Port function of the serial port can be set to:

- STD Modbus slave RTU (2 bytes/register) STD Modbus slave ASCII (2 bytes/register) Daniel slave RTU (4 bytes/register)
- Daniel slave ASCII

(4 bytes/register)

Port function for the serial port shall be set to STD Modbus slave to be able to read data listed in point 10.5 (including 10.5.1., 10.5.2. and 10.5.3.) in standard Modbus format.

Port function for the serial port shall be set to Daniel Modbus slave to be able to read data listed in point 10.6 (including 10.6.1., 10.6.2. and 10.6.3.) in Daniel/Omni/Enron Modbus format.

Register assignment for Ethernet port shall be set to STD MODBUS to be able to read data listed in point 10.5 (including 10.5.1., 10.5.2. and 10.5.3.) in standard Modbus format.

Register assignment for Ethernet port shall be set to Daniel to be able to read data listed in point 10.6 (including 10.6.1., 10.6.2. and 10.6.3.) in Daniel/Omni/Enron Modbus format.

(for Panametrics ultrasonic meters)

Special functions implemented for polling ultrasonic flow meters:

- Caldon US master (for Caldon ultrasonic meters)
- Daniel US master (for Daniel ultrasonic meters)
- Flexim US master (for Flexim ultrasonic meters)
- Flowsic-600 master (for Sick-Maihak Flowsic-600 ultrasonic meter)
- Khrone US master (for Khrone ultrasonic meters)
- Panam US master
- QSonic US Uniform
- (for Instromet ultrasonic meters with Uniform protocol) QSonicPlus US master (for Instromet ultrasonic meters with Modbus protocol)
- RMA US master (for RMA ultrasonic meters)
- RMG US master (for RMG ultrasonic meters)
- Siemens US master (for Siemens ultrasonic meters)

In this special functions not only the flow information (flow rate and/or gas velocity) but the diagnostic information is read from the meters as well.

Special functions implemented for polling gas chromatographs:

- ABB GC master (for ABB GC)
- ABB2 GC master (for ABB GC)
- Daniel GC master (for Daniel GC)
- Yamatake GC master (for Yamatake GC)
- Yokogawa GC master (for Yokogawa GC)

If one of the com port is configured for chromatograph polling then UNIFLOW-200 will read the natural gas composition from the gas chromatograph and the gas composition will be used in the gas properties calculation. See 9.2.2.1.1.1. and 9.2.4.1.

The serial ports and the USB port can be used as printer port to transfer the archive data to external device (file dumping to serial printer, serial port of PC or USB flash drive). See details in 9.1.5.

The archive data files sent to the serial or USB port make use of UTF8 encoding. To display the archive data file on external device it shall be set accordingly. Otherwise some of the characters on the reports might not be displayed properly.

10.1 Serial link setup

The parameters of the serial link are setup in the Parameters/Interfaces/Com ports menu.

After selecting the port to be configured the type (RS232, RS485, RS422) is set together with the data flow parameters (data bits, stop bits, parity, etc.). Then the mode of communication is selected (STD Modbus or Daniel Modbus, RTU or ASCII). Finally the device address shall be set.

If the port type RS485 or RS422MD is set then the response delay can also be set. The default value is 1 ms which is suitable in most of the case but can be modified if required.

In case of RS232 and RS422PP port type the response delay can not be set.

10.2 Ethernet link setup

The parameters of the Ethernet link are setup in the Parameters/Interfaces/Ethernet menu.

The IP address, the subnet mask and the default gateway should be set together with the Modbus device address.

The register mode can be set to STD or Daniel.

The protocol implemented is MODBUS over TCP.

The flow computer is capable to act as DHCP server if configured so.

10.3 Communication device address

If Daniel Modbus slave RTU or Daniel Modbus slave ASCII mode is selected then there are two ways to read the metering data from the flow computer for all 12 metering streams (8 physical and 4 virtual streams).

All data for all streams can be read on the base device address set in the com port setup menu. At the same time all metering stream have its own device address and the metering data for a particular stream can be read on this particular device address.

	•	Registers on the base device address		Registers on the stream device address	
Stream	Totals (4 bytes integer)	Other data (4 bytes float)	Stream device address	Totals (4 bytes integer)	Other data (4 bytes float)
1	5001 - 5148	7001 - 7099	base device address	5001 - 5148	7001 - 7099
2	5201 - 5348	7101 - 7199	base device address + 1	5001 - 5148	7001 - 7099
3	5401 - 5548	7201 - 7299	base device address + 2	5001 - 5148	7001 - 7099
4	5601 - 5748	7301 - 7399	base device address + 3	5001 - 5148	7001 - 7099
5	5801 - 5948	7401 - 7499	base device address + 4	5001 - 5148	7001 - 7099
6	6001 - 6148	7501 - 7599	base device address + 5	5001 - 5148	7001 - 7099
7	6201 - 6348	7601 - 7699	base device address + 6	5001 - 5148	7001 - 7099
8	6401 - 6548	7701 - 7799	base device address + 7	5001 - 5148	7001 - 7099
9	9001 - 9148	8001 - 8099	base device address + 8	5001 - 5148	7001 - 7099
10	9201 - 9348	8101 - 8199	base device address + 9	5001 - 5148	7001 - 7099
11	9401 - 9548	8201 - 8299	base device address + 10	5001 - 5148	7001 - 7099
12	9601 - 9748	8301 - 8399	base device address + 11	5001 - 5148	7001 - 7099

The register address ranges and the device addresses are shown in the table below.

Table 10-16 Communication device addresses

NOTE

In Daniel Modbus slave mode one UNIFLOW-200 occupies 12 consecutive device addresses. If other devices connected to the serial link (e.g. on RS485 bus) the setting of the device addresses should take it into consideration.

10.4 Protocol implementation

10.4.1 Implemented Modbus command codes

10.4.1.1 Read multiply registers (code: 3)

Query:

А	F	RAH	RAL	RNH	RNL	СН	CL

Response:

A F BN D1 Dn CH CL	1.0	capolia	σ.					
	ŀ	A	F	BN	D1	 Dn	CH	CL

10.4.1.2 Write multiply registers (code: 16)

Query:

A F RAH RAL RNH RNL BN D1 CH CL	Quory	·						
	А	F		RNH	RNL	BN		

Response:

A F RAH RAL RNH RNL CH CL	1.00	-p 0.10	0.					
	А		F	RAH	RAL	RNL	СН	CL

where:

А	- device address
F	- function code
RAH, RAL	- starting register address, in high byte, low byte order
RNH, RNL	- number of registers, in high byte, low byte order
BN	- number of bytes (from 0 to 255)
D1 Dn	 data bytes, n = 2 * number of registers
CH, CL	 CRC check sum, in high byte, low byte order

Examples

Read stream 6 instantaneous flow data and alarm registers (18 registers) from the flow computer with device address 17 (0x11)

Query

device address	function code	starting register (high byte)	starting register (low byte)	number of register (high byte)	number of register (low byte)	checksum (2 bytes)
0x11	0x03	0x01	0x2c	0x00	0x12	CRC

Response

device address	function code	number of bytes	data bytes (36 bytes)	
0x11	0x03	0x30		CRC

Write zero to the first 4 gas component concentration register

Q	uerv	
S.	uory	

Query								
device address	function code	starting register (high byte)	starting register (low byte)	number of register (high byte)	number of register (low byte)	byte count (1 byte)	data (16 bytes)	checksum (2 bytes)
0x11	0x10	0x03	0x32	0x00	0x08	0x10		CRC

Response

device address	function code	starting register (high byte)	starting register (low byte)	number of register (high byte)	number of register (low byte)	checksum (2 bytes)
0x11	0x10	0x03	0x32	0x00	0x08	CRC

10.4.2 Calculation of CRC check sum

The polynomial value used in CRC calculation is 0xa001.

CRC is calculated in steps as follows:

- 1. Load a 16-bit register with 0xffff hex (all 1's). Call this the CRC register.
- 2. Exclusive OR the first 8-bit byte of the message with the high-order byte of the 16-bit CRC register, putting the result in the CRC register.
- 3. Shift the CRC register one bit to the right (toward the LSB), zero–filling the MSB. Extract and examine the LSB.
- 4 (If the LSB was 0): Repeat Step 3 (another shift).
- 5. (If the LSB was 1): Exclusive OR the CRC register with the polynomial value A001 hex (1010 0000 0000 0001).
- 6. Repeat Steps 3 and 4 until 8 shifts have been performed. When this is done, a complete 8-bit byte will have been processed.
- 7. Repeat the steps 2 to 6 with the next byte of the message until all the bytes are processed.
- 8. The result is the CRC of the message.

10.4.3 Data types in the Modbus registers

10.4.3.1 8 bit binary unsigned integer

They are stored in the low order or high order byte of the Modbus registers.

Range: from 0 to 255 (0x00 to 0xff)

Data stored in this form are the parts of the date for example.

In some cases bits of this data type have separate interpretation for example in alarm registers.

10.4.3.2 16 bit binary unsigned integer

They are stored in the Modbus registers. Range: from 0 to 65535 (0x0000 to 0xfff)

10.4.3.3 32 bit binary signed integer

They are stored in two Modbus registers.

Range: from -2 147 483 648 to 2 147 483 648 (0x0000 to 0x7fffffff positive numbers and 0x80000000 to 0xffffffff negative numbers)

Numbers are stored as follows:

31 30					
S	absolute value of the	ne number			
High	n byte	Low byte + 2	Low byte + 1	Low byte	
low	order Modbus regist	er	high order Modbus	register	

The S sign bit is 0 if the number is positive and 1 if the number is negative. As far as number is stored not in 2's complements form both +0 and -0 are valid.

10.4.3.4 Floating point number

Most of the data are stored in floating point format.

The format used in the flow computer for floating point number is equivalent to the IEEE 754/1985 Short real (single precision) format.

Numbers are stored in three parts: sign, exponent and mantissa on four bytes. Floating point numbers are stored in two Modbus registers.

Range: +/-(8.43*10⁻³⁷ ... 3.4*10⁻³⁸), and the numbers are accurate up to 7 decimal digits.

31	30 2	3 22		0
S	Exponent	Mantissa		
High	n byte	Low byte	High byte	Low byte
High order Modbus register		ster	Low order Modbus regis	ter

The S sign bit is 0 if the number is positive and 1 if the number is negative.

As far as number is stored not in 2's complements form both +0 and -0 are valid. -0 is not interpreted as number. It is used for special purposes in the flow computer.

Mantissa is stored in normalized form without the most significant bit which is always 1. It means that the 22nd bit is 2⁻¹, the 21st bit is 2⁻² and the 0. bit is 2⁻²³

The exponent filed holds the exponent value biased by 127. The bias provides that the exponent field is always positive. The range of the exponent is from -126 to +127.

Floating point number = (-1)*S*(1+bit22*2-1+bit21*2-2+...+bit0*2-23)*2Exponent-127

Modbus register	Register type	Descrip	tion	Comment	
•					
0	ReadOnly	Str1. (phys	sical stream) data		60 reg./stream
	ReadOnly				
420	ReadOnly	Str8. (phys	sical stream) data		
		Offect	Dhusiaal stream data	Evaluation	
		Offset address	Physical stream data	Explanation	
		0-1			(32 bit floating)
		2-3	pressure temperature1 (fluid/forward)		(32 bit floating)
		4-5	temperature2 (ambient/reverse)		(32 bit floating)
		6-7	density at line conditions	alarma aada (II buta)	(32 bit floating)
		8-13	1-6. alarm register (16 bit int.)	alarm code (H byte)	signal code (L byte)
				0. bit: LO_range	temperature1:0
				1. bit: HI_range	temperature2 : 1
				2. bit: LO_limit	pressure: 2
				3. bit: HI_limit	diff.pressure: 3
				4. bit: cut-off	density: 6
		44	7		flow signal: 7
		14	7. alarm register	FF (H)	FF (L)
		15	8. alarm register	temp. fluid (H byte)	temp. ambient (L byte)
		16	9. alarm register	density (H byte)	pressure (L byte)
				0. bit: LO_range	0. bit: LO_range
				1. bit: HI_range	1. bit: HI_range
				2. bit: LO_limit	2. bit: LO_limit
				3. bit: HI_limit	3. bit: HI_limit
				4. bit: LOLO_limit	4. bit: LOLO_limit
				5. bit: HIHI_limit	5. bit: HIHI_limit
				6. bit: active	6. bit: active
				7. bit: valid	7. bit: valid
		17	10. alarm register	stream (H byte)	flow signal (L byte)
				0. bit: range	0. bit: LO_range
				1. bit: composition	1. bit: HI_range
				2. bit: method	2. bit: LO_limit
				3. bit: check	3. bit: HI_limit
				4. bit: quantity	4. bit: LOLO_limit
				5. bit: dp/p ratio	5. bit: HIHI_limit
				6. bit: cut-off	6. bit: active
		10 10	volume at base conditions	7. bit: valid	7. bit: valid
		18-19	volume at base conditions (CVOL) flowrate		(32 bit floating)
		20-21	mass flowrate		
		22-23	energy flowrate		
		24-25	volume at base conditions	rollover at 10 000 000)
		2,20	(CVOL) cumulative total		
		26-27	mass cumulative total	rollover at 10 000 000)
		28-29	energy cumulative total	rollover at 10 000 000	
		42-43	premium volume cumulative total	rollover at 10 000 000	
		44-45	premium mass cumulative total	rollover at 10 000 000	

10.5 Standard Modbus register map (2 byte/register)

		46-47	premium energy cumulative total	rollover at 10 000 000	
480	ReadOnly	Str9. (virtua	al stream) data	(32 bit floating)	42 reg./stream
	ReadOnly				
606	ReadOnly	Str12. (virte	ual stream) data		

Offset	Virtual stream data	Explanation
address		
0-1	volume at base conditions	
	(CVOL) flowrate	
2-3	mass flowrate	
4-5	energy flowrate	
6-7	volume at base conditions	rollover at 10 000 000
	(CVOL) cumulative total	
8-9	mass cumulative total	rollover at 10 000 000
10-11	energy cumulative total	rollover at 10 000 000
24-25	prem. volume cumulative tot.	rollover at 10 000 000
26-27	prem. mass cumulative total	rollover at 10 000 000
28-29	prem. energy cumulative total	rollover at 10 000 000

648	ReadOnly	Flow rates	(32 bit floating)	72 reg./stream
-----	----------	------------	-------------------	----------------

Offset	Stream flowrates	Explanation
address	(for quick access)	
0-1	Str1. volume at base conditions (CVOL) flowrate	
2-3	Str1. mass flowrate	
4-5	Str1. energy flowrate	
66-67	Str12. volume at base conditions (CVOL) flowrate	
68-69	Str12. mass flowrate	
70-71	Str12. energy flowrate	

816-817 ReadWrite Barometric pressure (32 bit floating) 2 regis

818	ReadWrite	Natural gas	components	(32 bit floating)	44 registe
		Offset	Natural gas components	Explanation	
		address			Modbus STD1
		0-1	Nitrogen [mole%]	If the source of gas compositio	n selected
		2-3	Carbon-dioxide [mole%]	as Modbus STD1 then gas cor	nposition
		4-5	Hydrogen-sulfide [mole%]	downloaded into this register ra	ange will be
		6-7	Water [mole%]	used in the calculation.	
		8-9	Helium [mole%]	The range is common for all st	reams from 1 to 8
		10-11	Methane [mole%]		
		12-13	Ethane [mole%]		
		14-15	Propane [mole%]		
		16-17	normal-Butane [mole%]		
		18-19	iso-Butane [mole%]		
		20-21	normal-Pentane [mole%]		
		22-23	iso-Pentane [mole%]		
		24-25	normal-Hexane [mole%]		
		26-27	normal-Heptane [mole%]		
		28-29	normal-Octane [mole%]		
		30-31	normal-Nonane [mole%]		
		32-33	normal-Decane [mole%]		
		34-35	Oxygen [mole%]		
		36-37	Carbon-monoxide [mole%]		
		38-39	Hydrogen [mole%]		
		40-41	Relative density [-]		
		42-43	Inferior calorific value [MJ/m ³]		

862 ReadWrite timeout counter register *	1 register (16 bit integer)
--	-----------------------------

* When the timeout counter value exceeds the update timeout it causes an update timeout alarm. In this alarm condition the component data will be substituted with its keypad value in the subsequent calculations. The register block update automatically clears its own timeout counter register to zero.

				Ŭ
863	ReadWrite	Date and time	5	register

Offset address	Time	Explanation	
0	alarm, second (0-59)	second alarm (H)	second (L)
1	alarm, minute (0-59)	minute alarm (H)	minute (L)
2	alarm, hour (0-23)	hour alarm (H)	hour (L)
3	day (1-31), week day (1-7)	day of month (H)	day of week (L)
4	year (0-99), month (1-12)	year (H)	month (L)

870	ReadWrite	Natural gas components - 1th stream	(32 bit floating)	54 register
	ReadWrite			
1248	ReadWrite	Natural gas components - 8th stream		

Offset	Natural gas components	Explanation
address	. .	Modbus STD2
0-1	Superior calorific value	If the source of gas composition selected
2-3	Argon, mole%	as Modbus STD2 then gas composition
4-5	Line density	downloaded into this register range will be
6-7	Base density	used in the calculation.
8-9	Nitrogen [mole%]	There are separate address range for each
10-11	Carbon-dioxide [mole%]	of the streams to download the gas
12-13	Hydrogen-sulfide [mole%]	composition.
14-15	Water [mole%]	
16-17	Helium [mole%]	
18-19	Methane [mole%]	
20-21	Ethane [mole%]	
22-23	Propane [mole%]	
24-25	normal-Butane [mole%]	
26-27	iso-Butane [mole%]	
28-29	normal-Pentane [mole%]	
30-31	iso-Pentane [mole%]	
32-33	normal-Hexane [mole%]	
34-35	normal-Heptane [mole%]	
36-37	normal-Octane [mole%]	
38-39	normal-Nonane [mole%]	
40-41	normal-Decane [mole%]	
42-43	Oxygen [mole%]	
44-45	Carbon-monoxide [mole%]	
46-47	Hydrogen [mole%]	
48-49	Relative density [-]	
50-51	Inferior calorific value	
52	timeout counter register *	1 register (integer)
53	-	

* When the timeout counter value exceeds the update timeout it causes an update timeout alarm. In this alarm condition the component data will be substituted with its keypad value in the subsequent calculations. The register block update automatically clears its own timeout counter register to zero.

The unit of densities and calorific values depends on the selection of metric or imperial units (see the chapter 9.2.2.1)

	METRIC UNIT	IMPERIAL UNIT
gas components	mole %	mole%
line density	kg/m³	lbs/CF
base density	kg/m ³	lbs/CF
relative density	-	-
calorific value	MJ/m ³	BTU/SCF

1844	ReadOnly	(IO1 Ch1) analog input	(32 bit floating)	3 reg./channel
	ReadOnly			
1865	ReadOnly	(IO1 Ch8) analog input		
1868	ReadOnly	(IO2 Ch1) analog input		
	ReadOnly			
1889	ReadOnly	(IO2 Ch2) analog input		
1892	ReadOnly	(IO3 Ch1) analog input		
	ReadOnly			
1913	ReadOnly	(IO3 Ch8) analog input		
1916	ReadOnly	(IO4 Ch1) analog input		
	ReadOnly			
1937	ReadOnly	(IO4 Ch8) analog input		

Offset address	Analog input signals (Quick access)	Explanation	
0	state, alarm	state (H)	alarm state (L)
			0. bit: LO_range
			1. bit: HI_range
			2. bit: LO_limit
			3. bit: HI_limit
			4. bit: LOLO_limit
			5. bit: HIHI_limit
			6. bit: active
			7. bit: valid
1-2	measured data		

2004	ReadOnly	Totals grouped together		72 reg.
			(32 bit signed integer numbers)	

2004	ReadOnly	Str1. (physical stream) totals	6 reg./stream
2010	ReadOnly	Str2. (physical stream) totals	
2016	ReadOnly	Str3. (physical stream) totals	
2022	ReadOnly	Str4. (physical stream) totals	
2028	ReadOnly	Str5. (physical stream) totals	
2034	ReadOnly	Str6. (physical stream) totals	
2040	ReadOnly	Str7. (physical stream) totals	
2046	ReadOnly	Str8. (physical stream) totals	
2052	ReadOnly	Str9. (virtual stream) totals	
2058	ReadOnly	Str10. (virtual stream) totals	
2064	ReadOnly	Str11. (virtual stream) totals	
2070	ReadOnly	Str12. (virtual stream) totals	

Offset address	Physical streams total	Explanation
0-1	volume at base conditions (CVOL) cumulative total	rollover at 1 000 000 000 2 reg.
2-3	mass cumulative total	rollover at 1 000 000 000
4-5	energy cumulative total	rollover at 1 000 000 000

2076	ReadOnly	Str1. (physical stream) volume at line		72 reg.
	-	conditions (UVOL) total	(32 bit signed integer numbers)	2 reg./stream
2078	ReadOnly	Str2. (physical stream) volume at line		
		conditions (UVOL) total		

2080	ReadOnly	Str3. (physical stream) volume at line conditions (UVOL) total	
2082	ReadOnly	Str4. (physical stream) volume at line conditions (UVOL) total	
2084	ReadOnly	Str5. (physical stream) volume at line conditions (UVOL) total	
2086	ReadOnly	Str6. (physical stream) volume at line conditions (UVOL) total	
2088	ReadOnly	Str7. (physical stream) volume at line conditions (UVOL) total	
2090	ReadOnly	Str8. (physical stream) volume at line conditions (UVOL) total	

Offset address	Physical streams total	Explanation	
0-1	volume at line conditions (UVOL) cumulative total	rollover at 1 000 000 000	2 reg.

2100	ReadOnly	(IO1 Ch1) analog input	(32 bit floating)	3 reg./channel
	ReadOnly			-
2121	ReadOnly	(IO1 Ch8) analog input		
2124	ReadOnly	(IO2 Ch1) analog input		
	ReadOnly			
2145	ReadOnly	(IO2 Ch8) analog input		
2148	ReadOnly	(IO3 Ch1) analog input		
	ReadOnly			
2169	ReadOnly	(IO3 Ch8) analog input		
2172	ReadOnly	(IO4 Ch1) analog input		
	ReadOnly			
2193	ReadOnly	(IO4 Ch8) analog input		
2196	ReadOnly	(IO5 Ch1) analog input		
	ReadOnly			
2217	ReadOnly	(IO5 Ch8) analog input		

2220	ReadOnly	(IO1 Ch9) analog input	3 reg./channel
	ReadOnly		
2241	ReadOnly	(IO1 Ch16) analog input	
2244	ReadOnly	(IO2 Ch9) analog input	
	ReadOnly		
2265	ReadOnly	(IO2 Ch16) analog input	
2268	ReadOnly	(IO3 Ch9) analog input	
	ReadOnly		
2289	ReadOnly	(IO3 Ch16) analog input	
2292	ReadOnly	(IO4 Ch9) analog input	
	ReadOnly		
2313	ReadOnly	(IO4 Ch16) analog input	
2316	ReadOnly	(IO5 Ch9) analog input	
	ReadOnly		
2337	ReadOnly	(IO5 Ch16) analog input	

2340	ReadOnly	(IO1 Ch17) analog input	3 reg./channel
	ReadOnly		Ĩ
2361	ReadOnly	(IO1 Ch24) analog input	
2364	ReadOnly	(IO2 Ch17) analog input	
	ReadOnly		
2385	ReadOnly	(IO2 Ch24) analog input	
2388	ReadOnly	(IO3 Ch17) analog input	
	ReadOnly		
2409	ReadOnly	(IO3 Ch24) analog input	
2412	ReadOnly	(IO4 Ch17) analog input	
	ReadOnly		
2433	ReadOnly	(IO4 Ch24) analog input	
2436	ReadOnly	(IO5 Ch17) analog input	
	ReadOnly		
2457	ReadOnly	(IO5 Ch24) analog input	

2460	ReadOnly	(IO1 Ch25) analog input	3 reg./channel
	ReadOnly		
2481	ReadOnly	(IO1 Ch32) analog input	
2484	ReadOnly	(IO2 Ch25) analog input	
	ReadOnly		

2505	ReadOnly	(IO2 Ch32) analog input	
2508	ReadOnly	(IO3 Ch25) analog input	
	ReadOnly		
2529	ReadOnly	(IO3 Ch32) analog input	
2532	ReadOnly	(IO4 Ch25) analog input	
	ReadOnly		
2553	ReadOnly	(IO4 Ch32) analog input	
2556	ReadOnly	(IO5 Ch25) analog input	
	ReadOnly		
2577	ReadOnly	(IO5 Ch32) analog input	

2580	ReadWrite	Ch1 Modbus analog input	3 reg./channel
	ReadWrite		
2667	ReadWrite	Ch30 Modbus analog input	

Offset Address	Analog input signals (Quick access)	Explanation	
0	state, alarms	state (H)	alarm state (L)
		0. bit = 1 (ch in alarm)	0. bit: LO_range
			1. bit: HI_range
			2. bit: LO_limit
			3. bit: HI_limit
			4. bit: LOLO_limit
			5. bit: HIHI_limit
			6. bit: active
			7. bit: valid
1-2	measured data		(32 bit float)

2670	ReadOnly	IO1 digital inputs	2 reg./IO
2672	ReadOnly	IO2 digital inputs	
2674	ReadOnly	IO3digital inputs	
2676	ReadOnly	IO4 digital inputs	
2678	ReadOnly	IO5 digital inputs	

Offset Address	Digital input signal	Explanation
0	Status (16 bit)	1 bit / channel (1 = active, 0=inactive) (1-16. channel, 1. channel. = 0. bit)
1	Value (16 bit)	1 bit / channel (0=open, 1=closed) (1-16. channel., 1. channel. = 0. bit)

2680	ReadOnly	IO1 digital outputs	2 reg./IO
2682	ReadOnly	IO2 digital outputs	
2684	ReadOnly	IO3digital outputs	
2686	ReadOnly	IO4 digital outputs	
2688	ReadOnly	IO5 digital outputs	

Offset Address	Digital input signal	Explanation
0	Status (16 bit)	1 bit / channel (1 = active, 0=inactive) (1-16. channel, 1. channel. = 0. bit)
1	Value (16 bit)	1 bit / channel (0=open, 1=closed) (1-16. channel., 1. channel. = 0. bit)

2700	ReadOnly	Volume at line conditions (UVOL) flowrate		2 reg.
		(US flow meter on Com1 port	(32 bit float)	-
2702	ReadOnly	Com1 port, timeout counter register *		2 reg.
2708	ReadOnly	Volume at line conditions (UVOL) flowrate		2 reg.
		(US flow meter on Com2 port		-
2710	ReadOnly	Com2 port, timeout counter register *		2 reg.
2716	ReadOnly	Volume at line conditions (UVOL) flowrate		2 reg.
		(US flow meter on Com3 port		0
2718	ReadOnly	Com3 port, timeout counter register *		2 reg.

2730	ReadOnly	(IO1 Ch1) analog output	3 reg./channel
	ReadOnly		Ĩ
2739	ReadOnly	(IO1 Ch4) analog output	
2742	ReadOnly	(IO2 Ch1) analog output	
	ReadOnly		
2751	ReadOnly	(IO2 Ch4) analog output	
2754	ReadOnly	(IO3 Ch1) analog output	
	ReadOnly		
2763	ReadOnly	(IO3 Ch4) analog output	
2766	ReadOnly	(IO4 Ch1) analog output	
	ReadOnly		
2775	ReadOnly	(IO4 Ch4) analog output	
2778	ReadOnly	(IO5 Ch1) analog output	
	ReadOnly		
2787	ReadOnly	(IO5 Ch4) analog output	

Offset Address	Analog output signals	Explanation	
0	state, alarms	state (H)	alarm state (L)
		0. bit = 1 (ch in alarm)	0. bit: LO_range
			1. bit: HI_range
			2. bit: LO_limit
			3. bit: HI_limit
			4. bit: LOLO_limit
			5. bit: HIHI_limit
			6. bit: active
			7. bit: valid
1-2	measured data		(32 bit float)

3000	ReadOnly	Str1. CO2 emission	(32 bit float)	22 reg./stream
3022	ReadOnly	Str2. CO2 emission		
3044	ReadOnly	Str3. CO2 emission		
3066	ReadOnly	Str4. CO2 emission		
3088	ReadOnly	Str5. CO2 emission		
3110	ReadOnly	Str6. CO2 emission		
3132	ReadOnly	Str7. CO2 emission		
3154	ReadOnly	Str8. CO2 emission		

CO2 emission data block, total length 176 Modbus registers

Offset address	CO2 emission data by streams	Explanation
0-1	Specific carbon content	(32 bit float)
2-3	CO2 emission mass flowrate (instantaneous)	(32 bit float)
4-5	CO2 emission, cumulative mass total	(32 bit integer)
6-7	CO2 emission, previous hour mass total	(32 bit integer)
10-11	CO2 emission, previous day mass total	(32 bit integer)
12-13	CO2 emission, previous month mass total	(32 bit integer)
14-15	CO2 emission, current hour mass total	(32 bit integer)
16-17	CO2 emission, current day mass total	(32 bit integer)
20-21	CO2 emission, current month mass total	(32 bit integer)

General purpose register block, total length 120 Modbus registers

4000	ReadWrite	1. variable	(32 bit float)	2+2 reg./variable
4002	ReadWrite	2. variable		
4058	ReadWrite	30. variable		
4060	ReadWrite	1. variable timeout counter register *		
4062	ReadWrite	2. variable timeout counter register *		
4118	ReadWrite	3. variable timeout counter register *		

* When the timeout counter value of any particular Modbus signal exceeds the update timeout of that signal it causes an update timeout alarm. In this alarm condition if the Modbus signal is flow signal it will be substituted with zero (0), i.e. zero flow is assumed. If the Modbus signal is not flow signal it will be substituted with its keypad value in the subsequent calculations.

Register update of a variable automatically clears its own timeout counter register to zero.

9800	ReadOnly	Ethanol concentrations		32 reg.
			(32 bit floating)	-
9800	ReadOnly	Str1. (physical stream) concentrations		4 reg./stream
9804	ReadOnly	Str2. (physical stream) concentrations		
9808	ReadOnly	Str3. (physical stream) concentrations		
9812	ReadOnly	Str4. (physical stream) concentrations		
9816	ReadOnly	Str5. (physical stream) concentrations		
9820	ReadOnly	Str6. (physical stream) concentrations		
9824	ReadOnly	Str7. (physical stream) concentrations		

9828	ReadOnly	Str8. (phy	sical stream) concentrations		
		Offset address	Physical streams total	Explanation	
		0-1	concentration v/v %		2 reg.
		3-4	concentration m/m %		2 reg.

10.5.1 Accessing periodic totals

UNIFLOW-200 supports the reading of the periodic totals in one message for each stream separately in this register mode. All the periodic totals (120 registers) must be read in one message. Reading part of the totals is not supported.

The starting address of the periodic totals for stream n. calculated as follows:

Starting address = 20 000 + 256 * (stream number – 1)

The total length of the data bytes in the response is 240 bytes (60 totals in floating point format, i.e. 120 Modbus registers).

20000	ReadOnly	Str1. periodic totals	120 reg./stream
20256	ReadOnly	Str2. periodic totals	
20512	ReadOnly	Str3. periodic totals	
20768	ReadOnly	Str4. periodic totals	
21024	ReadOnly	Str5. periodic totals	
21280	ReadOnly	Str6. periodic totals	
21536	ReadOnly	Str7. periodic totals	
21792	ReadOnly	Str8. periodic totals	
22048	ReadOnly	Str9. periodic totals	
22304	ReadOnly	Str10. periodic totals	
22560	ReadOnly	Str11. periodic totals	
22816	ReadOnly	Str12. periodic totals	

Offset	Stream periodic totals (Arch1)	Explanation
address		
0-1	volume at base conditions (CVOL), previous hour	
2-3	volume at base conditions (CVOL), previous 8 hour	
4-5	volume at base conditions (CVOL), previous day	
6-7	volume at base conditions (CVOL), previous month	
10-11	volume at base conditions (CVOL), current hour	
12-13	volume at base conditions (CVOL), current 8 hour	
14-15	volume at base conditions (CVOL), current day	
16-17	volume at base conditions (CVOL), current month	
20-21	mass, previous hour	
22-23	mass, previous 8 hour	
24-25	mass, previous day	
26-27	mass, previous month	
30-31	mass, current hour	
32-33	mass, current 8 hour	
34-35	mass, current day	
36-37	mass, current month	

40.44		
40-41	energy, previous hour	
42-43	energy, previous 8 hour	
44-45	energy, previous day	
46-47	energy, previous month	
50-51	energy, current hour	
52-53	energy, current 8 hour	
54-55	energy, current day	
56-57	energy, current month	
60-61	premium volume at base conditions	
	(CVOL), previous hour	
62-63	premium volume at base conditions	
	(CVOL), previous 8 hour	
64-65	premium volume at base conditions	
	(CVOL), previous day	
66-67	premium volume at base conditions	
	(CVOL), previous month	
70-71	premium volume at base conditions	
	(CVOL), current hour	
72-73	premium volume at base conditions	
	(CVOL), current 8 hour	
74-75	premium volume at base conditions	
	(CVOL), current day	
76-77	premium volume at base conditions	
	(CVOL), current month	
80-81	premium mass, previous hour	
82-83	premium mass, previous 8 hour	
84-85	premium mass, previous day	
86-87	premium mass, previous month	
90-91	premium mass, current hour	
92-93	premium mass, current 8 hour	
94-95	premium mass, current day	
96-97	premium mass, current month	
100-101	premium energy, previous hour	
102-103	premium energy, previous 8 hour	
104-105	premium energy, previous day	
106-107	premium energy, previous month	
110-111	premium energy, current hour	
112-113		
	premium energy, current 8 hour	
114-115	premium energy, current 8 hour premium energy, current day	

Unit of measurement for the quantities listed in tables above:

	METRIC UNIT	IMPERIAL UNIT (only in case of natural gas measuring)
mass	kg (t)*	lb
mass flowrate	kg/h (t/h)*	lb/h
volume	m3 (I)*	MCF
volume flowrate	m3/h (l/h)*	MCF/h
energy	GJ (MJ, MWh, kWh)*	MMBTU
energy flowrate	GJ/h (MJ/h, MW, kW)*	MMBTU/h
pressure	bar (absolute)	PSIA
temperature	°C	°F

density	kg/m3	lb/CF
gas components	mole %	mole%
time	seconds	seconds

* depending on the settings in the flow computer

10.5.2 Accessing batch data

Addresses of Modbus registers related to batch measurement are listed in the table below. See also 9.1.7.

Modbus register	Reg. type	Description	Note
--------------------	-----------	-------------	------

9000	Read/Write	Register block for batch start/stop on stream 1.	40 registers/stream
	Read/Write		
9280	Read/Write	Register block for batch start/stop on stream 8.	

Offset	Batch parameters	Description	
0	Batch start/stop	Integer, 1 – start batch, 0 –	stop batch
			(1 reg.)
1	Copy of printed reports	Integer, (0,1,2,3 copy)	(1 reg.)
2-21	Tank car route (from/to)	40 x ASCII character	(20 reg.)
22-26	Number plate of the car	10 x ASCII character	(5 reg.)
27-39	Reserved		(13 reg.)

9320	ReadOnly	Register block for measured batch quantities on stream 1.block	60 registers/stream
	ReadOnly		
9740	ReadOnly	Register block for measured batch quantities on stream 8.block	

Offset	Batch quantities	Description		
0	Batch status	Integer, 1 –	in progress, 0 – [.]	finished
				(1 reg.)
1-5	Loading station (stream name)	10 x ASCII o	character	(5 reg.)
6-25	Tank car route (from/to)	40 x ASCII o	character	(20 reg.)
26-30	Number plate of the car	10 x ASCII o	character	(5 reg.)
31	Batch start time	Year (H)	Month (L)	Integer
32		Day (H)	Hour (L)	
33		Minute (H)	Second (L)	(3 reg.)
34	Batch stop time	Year (H)	Month (L)	Integer
35		Day (H)	Hour (L)	
36		Minute(H)	Second (L)	(3 reg.)
37	Reserved			(1 reg)
38-39	Batch mass [kg]	32 bit signed	d integer number	· (2 reg.)
40-41	Batch volume at base condition [I]	32 bit signed integer number (2 reg.)		· (2 reg.)
42-43	Batch average base density [kg/m ³]	floating poin	t number	(2 reg.)
44-45	Batch average temperature [°C]	floating poin	t number	(2 reg.)
46-47	Batch average line density [kg/m ³]	floating point number (2 reg.)		(2 reg.)
48-49	Batch average concentration %(m/m)	floating poin	t number	(2 reg.)
50-51	Batch average measured density [kg/m ³]	floating poin	t number	(2 reg.)
52-53	Batch average absolute pressure [bar]	floating poin	t number	(2 reg.)
54-55	Batch average gauge pressure [bar]	floating poin	t number	(2 reg.)
56-57	Batch volume at line conditions [I]	32 bit signed	d integer number	(2 reg.)
58-59	Batch average concentration %(v/v)	floating poin	t number	(2 reg.)

10.5.3 Accessing flow meter serial test data

Addresses of Modbus registers related to meter serial test measurement are listed in the table below. See also 9.1.8.

Flow meter serial test data are available via link (Ethernet or serial) set to Daniel Modbus register assignment.

MASTER/ SLAVE registers (2 byte) read only	SLAVE registers (2 byte) read/write to control serial test	MASTER registers (2 byte) read/write to control serial test from upper level (DCS)	Description	Unit of measurement	Data format / Note
20		2600	Function 1 – custody transfer measurement 2 – non custody transfer measurement		
21		2601	not used		
22		2602	not used		
23	2051	2603	Duration of the test	minute	16 bit unsigned integer
24	2052	2604	Start command = 0, idle = 1, start	-	16 bit unsigned integer
25	2053	2605	Stop command = 0, idle = 1, stop (finish test) = 2, abort (abort test)	-	16 bit unsigned integer
26		2606	Serial test status = 0, idle = 1, starting = 2, running = 3, data processing = 4, ready	-	16 bit unsigned integer
27		2607	Elapsed time	minute	16 bit unsigned integer
28		2608	Cycle counter	-	16 bit unsigned integer
29		2609	not used		
30			not used		
31-48			Stream name	-	ASCII string – read only
49			Stream serial number (1 to 8)	-	16 bit unsigned integer
50			serial test start Month Year	-	16 bit unsigned integer
51			serial test start Hour Day	-	16 bit unsigned integer
52			serial test start Second Minute	-	16 bit unsigned integer
53			not used		
54			serial test stop Month Year	-	16 bit unsigned integer

55	serial test stop Hour Day	-	16 bit unsigned integer
56	serial test stop Second Minute	-	16 bit unsigned integer
57	not used		
58	serial test volume at line conditions	m3	32 bit float
60	serial test volume at line conditions converted to the pressure and temperature in the master line	m3	32 bit float
62	serial test volume at base conditions	m3	32 bit float
64	serial test mass	kg	32 bit float
66	serial test energy	GJ	32 bit float
68	serial test average pressure	barA	32 bit float
70	serial test average temperature	°C	32 bit float
72	serial test average compression factor at line conditions	-	32 bit float
74	serial test average compression factor at base conditions	-	32 bit float
76	serial test average volume flow rate at line conditions	m3/h	32 bit float
78	serial test average volume flow rate at line conditions converted to the pressure and temperature in the master line	m3/h	32 bit float
80	serial test average volume flow rate at base conditions	m3/h	32 bit float
82	serial test average mass flow rate	kg/h	32 bit float
84	serial test average energy flow rate	GJ/h	32 bit float
86	serial test average relative density	-	32 bit float
88	serial test average base density	kg/m3	32 bit float
90	serial test average line density	kg/m3	32 bit float
92	serial test average relative density converted to the pressure and temperature in the master line	kg/m3	32 bit float
94	serial test average inferior heating value	MJ/m3	32 bit float
96	serial test average superior heating value	MJ/m3	32 bit float
98	serial test average differential pressure	mbar	32 bit float
100	serial test average nitrogen	mole%	32 bit float
102	serial test average carbon-dioxide	mole%	32 bit float
104	serial test average H2S	mole%	32 bit float
106	serial test average H2O	mole%	32 bit float

108	serial test average helium	mole%	32 bit float
110	serial test average methane	mole%	32 bit float
112	serial test average ethane	mole%	32 bit float
114	serial test average propane	mole%	32 bit float
116	serial test average n-butane	mole%	32 bit float
118	serial test average i-butane	mole%	32 bit float
120	serial test average n-pentane	mole%	32 bit float
122	serial test average i-pentane	mole%	32 bit float
124	serial test average hexane	mole%	32 bit float
126	serial test average heptane	mole%	32 bit float
128	serial test average octane	mole%	32 bit float
130	serial test average nonane	mole%	32 bit float
132	serial test average decane	mole%	32 bit float
134	serial test average oxygen	mole%	32 bit float
136	serial test average carbon-monoxide	mole%	32 bit float
138	serial test average hydrogen	mole%	32 bit float
140	serial test average argon	mole%	32 bit float
142	serial test average total moles	mole%	32 bit float

Note: batch data and serial test data are available in metric units only.

10.6 Daniel Modbus register map (4 byte/register)

10.6.1 Registers for system date and time modification via Modbus link

Register address	Data type	Description
1	16 bit integer	Downloaded Year (4 digits) (19002999)
2	16 bit integer	Downloaded Near (4 digits) (15002555)
3	16 bit integer	
	•	Downloaded Day (131)
4	16 bit integer	Downloaded Hour (023)
5	16 bit integer	Downloaded Minute (059)
6	16 bit integer	Downloaded Second (059
7	16 bit integer	Accept time
		Write 1 to this register to accept the downloaded date and time and set it as
		current date and time.
		After accepting the time flow computer writes it to 0.
8 10	16 bit integer	n/a
11	16 bit integer	System clock Year (4 digits)
12	16 bit integer	System clock Month
13	16 bit integer	System clock Day
14	16 bit integer	System clock Hour
15	16 bit integer	System clock Minute
16	16 bit integer	System clock Second
17 20	16 bit integer	n/a

Modify the time in steps:

- 1. Write the desired new date and time into registers 1 to 6.
- 2. Write 1 to register 7. Writing register 7 to 1 can be done in one message together with the date and time writing.
- 3. UNIFLOW-200 accepts the new date and time and writes register 7 back to 0.

10.6.2 Registers for totals

Register address	Data type	Description
5001	32 bit integer	Current hour volume at base conditions (CVOL)
5002	32 bit integer	Current day volume at base conditions (CVOL)
5003	32 bit integer	Current multiday volume at base conditions (CVOL)
5004	32 bit integer	Current month volume at base conditions (CVOL)
5005	32 bit integer	Previous hour volume at base conditions (CVOL)
5006	32 bit integer	Previous day volume at base conditions (CVOL)
5007	32 bit integer	Previous multiday volume at base conditions (CVOL)
5008	32 bit integer	Previous month volume at base conditions (CVOL)
5009	32 bit integer	Volume at base conditions (CVOL) cumulative total
5010	32 bit integer	n/a
5011	32 bit integer	Current hour carbon mass
5012	32 bit integer	Current day carbon mass
5013	32 bit integer	Current multiday carbon mass
5014	32 bit integer	Current month carbon mass

5015	32 bit integer	Previous hour carbon mass
5016	32 bit integer	Previous day carbon mass
5017	32 bit integer	Previous multiday carbon mass
5018	32 bit integer	Previous month carbon mass
5019	32 bit integer	Carbon mass cumulative total
5020	32 bit integer	n/a
5021	32 bit integer	Current hour energy
5022	32 bit integer	Current day energy
5023	32 bit integer	Current multiday energy
5024	32 bit integer	Current month energy
5025	32 bit integer	Previous hour energy
5026	32 bit integer	Previous day energy
5027	32 bit integer	Previous multiday energy
5028	32 bit integer	Previous month energy
5029	32 bit integer	Energy cumulative total
5030	32 bit integer	n/a
5031	32 bit integer	n/a
5032	32 bit integer	n/a
5033	32 bit integer	n/a
5034	32 bit integer	n/a
5035	32 bit integer	n/a
5036	32 bit integer	n/a
5037	32 bit integer	n/a
5038	32 bit integer	n/a
5039	32 bit integer	n/a
5040	32 bit integer	n/a
5041	32 bit integer	Current day premium volume at base conditions (CVOL)
5042	32 bit integer	Current multiday premium volume at base conditions (CVOL)
5043	32 bit integer	Current month premium volume at base conditions (CVOL)
5044	32 bit integer	Previous hour premium volume at base conditions (CVOL)
5045	32 bit integer	Previous day premium volume at base conditions (CVOL)
5046	32 bit integer	Previous multiday premium volume at base conditions (CVOL)
5047	32 bit integer	Previous month premium volume at base conditions (CVOL)
5048	32 bit integer	Premium volume at base conditions (CVOL) cumulative total
5049	32 bit integer	n/a
5050	32 bit integer	n/a
5051	32 bit integer	n/a
5052	32 bit integer	n/a
5053	32 bit integer	n/a
5054	32 bit integer	n/a
5055	32 bit integer	n/a
5056	32 bit integer	n/a
5057	32 bit integer	n/a
5058	32 bit integer	n/a
5059	32 bit integer	n/a
5060	32 bit integer	n/a
5061	32 bit integer	Current hour volume at line conditions (UVOL)
5062	32 bit integer	Current day volume at line conditions (UVOL)
		· · · · ·

	20 h 11 interne	
5063	32 bit integer	Current multiday volume at line conditions (UVOL)
5064	32 bit integer	Current month volume at line conditions (UVOL)
5065	32 bit integer	Previous hour volume at line conditions (UVOL)
5066	32 bit integer	Previous day volume at line conditions (UVOL)
5067	32 bit integer	Previous multiday volume at line conditions (UVOL)
5068	32 bit integer	Previous month volume at line conditions (UVOL)
5069	32 bit integer	Volume at line conditions (UVOL) cumulative total
5070	32 bit integer	n/a
5071	32 bit integer	Current hour fault volume at base conditions (CVOL)
5072	32 bit integer	Current day fault volume at base conditions (CVOL)
5073	32 bit integer	Current multiday fault volume at base conditions (CVOL)
5074	32 bit integer	Current month fault volume at base conditions (CVOL)
5075	32 bit integer	Previous hour fault volume at base conditions (CVOL)
5076	32 bit integer	Previous day fault volume at base conditions (CVOL)
5077	32 bit integer	Previous multiday fault volume at base conditions (CVOL)
5078	32 bit integer	Previous month fault volume at base conditions (CVOL)
5079	32 bit integer	Fault volume at base conditions (CVOL) cumulative total
5080	32 bit integer	n/a
5081	32 bit integer	n/a
5082	32 bit integer	n/a
5083	32 bit integer	n/a
5084	32 bit integer	n/a
5085	32 bit integer	n/a
5086	32 bit integer	n/a
5087	32 bit integer	n/a
5088	32 bit integer	n/a
5089	32 bit integer	n/a
5090	32 bit integer	n/a
5090	32 bit integer	Current month maximum hourly volume at base conditions (CVOL)
5091	32 bit integer	Current month maximum hourly volume at base conditions (CVOL)
5092	32 bit integer	
	32 bit integer	Current month maximum hourly volume at base conditions (CVOL), day
5094	32 bit integer	Current month maximum hourly volume at base conditions (CVOL), hour
5095	•	Previous month maximum hourly volume at base conditions (CVOL)
5096	32 bit integer	Previous month maximum hourly volume at base conditions (CVOL), month
5097	32 bit integer	Previous month maximum hourly volume at base conditions (CVOL), day
5098	32 bit integer	Previous month maximum hourly volume at base conditions (CVOL), hour
5099	32 bit integer	n/a
5100	32 bit integer	n/a
5101	32 bit integer	Current day hourly volume at base conditions (CVOL) at end-of-day hour+1
5101	32 bit integer	hour Same for +2 hours
	32 bit integer	
5103	32 bit integer	Same for +3 hours
5104	v	Same for +4 hours
5105	32 bit integer	Same for +5 hours
5106	32 bit integer	Same for +6 hours
5107	32 bit integer	Same for +7 hours
5108	32 bit integer	Same for +8 hours
5109	32 bit integer	Same for +9 hours

5110	32 bit integer	Same for +10 hours
5111	32 bit integer	Same for +11 hours
5112	32 bit integer	Same for +12 hours
5113	32 bit integer	Same for +13 hours
5114	32 bit integer	Same for +14 hours
5115	32 bit integer	Same for +15 hours
5116	32 bit integer	Same for +16 hours
5117	32 bit integer	Same for +17 hours
5118	32 bit integer	Same for +18 hours
5119	32 bit integer	Same for +19 hours
5120	32 bit integer	Same for +20 hours
5121	32 bit integer	Same for +21 hours
5122	32 bit integer	Same for +22 hours
5123	32 bit integer	Same for +23 hours
5124	32 bit integer	Same for +24 hours
5125	32 bit integer	Current day hourly energy at end-of-day hour+1 hour
5126	32 bit integer	Same for +2 hours
5127	32 bit integer	Same for +3 hours
5128	32 bit integer	Same for +4 hours
5129	32 bit integer	Same for +5 hours
5130	32 bit integer	Same for +6 hours
5131	32 bit integer	Same for +7 hours
5132	32 bit integer	Same for +8 hours
5133	32 bit integer	Same for +9 hours
5134	32 bit integer	Same for +10 hours
5135	32 bit integer	Same for +11 hours
5136	32 bit integer	Same for +12 hours
5137	32 bit integer	Same for +13 hours
5138	32 bit integer	Same for +14 hours
5139	32 bit integer	Same for +15 hours
5140	32 bit integer	Same for +16 hours
5141	32 bit integer	Same for +17 hours
5142	32 bit integer	Same for +18 hours
5143	32 bit integer	Same for +19 hours
5144	32 bit integer	Same for +20 hours
5145	32 bit integer	Same for +21 hours
5146	32 bit integer	Same for +22 hours
5147	32 bit integer	Same for +23 hours
5148	32 bit integer	Same for +24 hours

10.6.3 Registers for other measured data

Register	Data type	Description
address		
7001	32 bit floating	Downloaded Nitrogen
7002	32 bit floating	Downloaded Carbon-dioxide
7003	32 bit floating	Downloaded Hydrogen-sulfide

7004	32 bit floating	Downloaded Water
7004	32 bit floating	Downloaded Helium
7005	32 bit floating	Downloaded Methane
7000	32 bit floating	Downloaded Ethane
7007	32 bit floating	Downloaded Propane
7000	32 bit floating	Downloaded n-Butane
7003	32 bit floating	Downloaded i-Butane
7010	32 bit floating	Downloaded n-Pentane
7011	32 bit floating	Downloaded i-Pentane
7012	32 bit floating	Downloaded n-Hexane
7013	32 bit floating	Downloaded n-Heptane
7014	32 bit floating	Downloaded n-Octane
7013	32 bit floating	Downloaded n-Octane
7010	32 bit floating	Downloaded n-Decane
7017	32 bit floating	Downloaded Oxygen
7018	32 bit floating	Downloaded Carbon-monoxide
7019	32 bit floating	
7020	32 bit floating	Downloaded Hydrogen Downloaded Relative density
7021	32 bit floating	Downloaded Inferior calorific value
7022	32 bit floating	Downloaded Superior calorific value
7023	32 bit floating	
7024	32 bit floating	Downloaded argon
7025	32 bit floating	Line density
	32 bit floating	Base density
7027	32 bit floating	Specific carbon content
7028	32 bit floating	n/a
7029	32 bit floating	n/a
7030	32 bit floating	Downloaded Ethylene
7031	32 bit floating	Fluid pressure, absolute
7032	32 bit floating	Fluid temperature
7033	32 bit floating	Differential pressure
7034	32 bit floating	Volume at base conditions (CVOL) flowrate
7035	•	Energy flowrate
7036	32 bit floating	Volume at line conditions (UVOL) flowrate
7037	32 bit floating 32 bit floating	n/a
7038	•	n/a
7039	32 bit floating 32 bit floating	Carbon mass flowrate
7040	32 bit floating	n/a
7041	32 bit floating	Current day average pressure, absolute
7042	32 bit floating	Current day average temperature
7043	32 bit floating	Current day average compression factor (K=Zline/Zbase), -
7044	32 bit floating	Previous day average pressure, absolute
7045	32 bit floating	Previous day average temperature
7046	32 bit floating	Previous day average compression factor (K=Zline/Zbase), -
7047	32 bit floating	Current month average pressure, absolute
7048	32 bit floating	Current month average temperature
7049	32 bit floating	Current month average compression factor (K=Zline/Zbase), -
7050	32 bit floating	Previous month average pressure, absolute
7051	52 bit livatility	Previous month average temperature

	00 bit fla atima	
7052	32 bit floating	Previous month average compression factor (K=Zline/Zbase), -
7053	32 bit floating	n/a
7054	32 bit floating	n/a
7055	32 bit floating	Pressure measured at IO channel
7056	32 bit floating	Differential pressure (dP low) measured at IO channel
7057	32 bit floating	Differential pressure (dP medium) measured at IO channel
7058	32 bit floating	Differential pressure (dP high) measured at IO channel
7059	32 bit floating	Temperature measured at 4-20 mA IO channel
7060	32 bit floating	n/a
7061	32 bit floating	Relative density measured at IO channel
7062	32 bit floating	CO2 content measured at IO channel, mole%
7063	32 bit floating	N2 content measured at IO channel, mole%
7064	32 bit floating	Inferior calorific value measured at IO channel
7065	32 bit floating	Temperature measured at Pt100 IO channel
7066	32 bit floating	n/a
7067	32 bit floating	Linear gas velocity
7068	32 bit floating	n/a
7069	32 bit floating	n/a
7070	32 bit floating	n/a
7071	32 bit floating	Current hour fault time, hour
7072	32 bit floating	Current day fault time, hour
7073	32 bit floating	Current multiday fault time, hour
7074	32 bit floating	Current month fault time, hour
7075	32 bit floating	Previous hour fault time, hour
7076	32 bit floating	Previous day fault time, hour
7077	32 bit floating	Previous multiday fault time, hour
7078	32 bit floating	Previous month fault time, hour
7079	32 bit floating	Fault time cumulative total, hour
7080	32 bit floating	n/a
7081	32 bit floating	n/a
7082	32 bit floating	n/a
7083	32 bit floating	n/a
7084	32 bit floating	n/a
7085	32 bit floating	n/a
7086	32 bit floating	n/a
7087	32 bit floating	n/a
7088	32 bit floating	n/a
7089	32 bit floating	n/a
7090	32 bit floating	n/a
7091	32 bit floating	Current hour flow time, hour
7092	32 bit floating	Current day flow time, hour
7093	32 bit floating	Current multiday flow time, hour
7094	32 bit floating	Current month flow time, hour
7095	32 bit floating	Previous hour flow time, hour
7096	32 bit floating	Previous day flow time, hour
7097	32 bit floating	Previous multiday flow time, hour
7098	32 bit floating	Previous month flow time, hour
7099	32 bit floating	Flow time cumulative total, hour
,,,,,,	- 0	

Unit of measurement for the quantities listed in tables above are as follows:

mass mass flowrate volume volume flowrate energy energy flowrate pressure temperature density line, base relative density calorific value gas component content differential pressure linear gas velocity	METRIC UNIT kg (t)* kg/h (t/h)* m3 (or l)* m3/h (or l/h)* GJ (MJ, MWh, kWh)* GJ/h (MJ/h, MW, kW)* bar °C kg/m3 - MJ/m3 mole % mbar m/s	IMPERIAL UNIT Ib Ib/h MCF MCF/h MMBTU/h PSIA or PSIG °F Ib/CF - BTU/SCF mole% inchH2O ft/s
•	m/s	ft/s
compression factor	-	-
specific carbon content	kg/m3	lb/CF
time	seconds	seconds

* depending on the settings in the flow computer

10.7 Register maps of the Modbus Slave devices

Uniflow-200 is capable to communicate with different Modbus Slave devices (gas chromatographs, ultrasonic meters, mass flow meters). The Modbus registers read from these Modbus Slave devices are described below. In case of difficulties in establishing communication with Modbus Slave devices it is recommended to check if the registers in the Modbus Slave device are mapped as listed in the Tables below.

Register address	Data type	Description	Unit	Remark
5000	float32	Volume flow rate at line conditions	m3/h	
5002	float32	Fluid Temperature Input	deg C	
5004	float32	Average Cf (VOS)	m/s	
5006	float32	Meter Body Temp	deg C	
5008	float32	Pressure	bar	
5010	float32	Average fluid velocity	m/s	
5012	float32	Profile Factor Meter has Calculated	-	
5014	float32	Flatness Ratio	-	
5016	float32	Swirl Ratio	-	
5018	float32	Asymmetry Ratio	-	
5020	float32	Plane Ratio	-	
5022	float32	A/I 1	V	
5024	float32	A/I 2	V	
5050	float32	Velocity of Sound Path 1	m/s	
5052	float32	Velocity of Sound Path 2	m/s	
5054	float32	Velocity of Sound Path 3	m/s	
5056	float32	Velocity of Sound Path 4	m/s	
5058	float32	Velocity of Sound Path 5	m/s	
5060	float32	Velocity of Sound Path 6	m/s	
5062	float32	Velocity of Sound Path 7	m/s	
5064	float32	Velocity of Sound Path 8	m/s	
5066	float32	Measured Fluid Velocity Path 1	m/s	
5068	float32	Measured Fluid Velocity Path 2	m/s	

10.7.1 Register map of Caldon LEFM 380Ci ultrasonic meter

5070	float32	Measured Fluid Velocity Path 3	m/s	
5072	float32	Measured Fluid Velocity Path 4	m/s	
5074	float32	Measured Fluid Velocity Path 5	m/s	
5076	float32	Measured Fluid Velocity Path 6	m/s	
5078	float32	Measured Fluid Velocity Path 7	m/s	
5080	float32	Measured Fluid Velocity Path 8	m/s	
5082	float32	Normalized Velocity Path 1	-	
5084	float32	Normalized Velocity Path 2	-	
5086	float32	Normalized Velocity Path 3	-	
5088	float32	Normalized Velocity Path 4	-	
5090	float32	Normalized Velocity Path 5	-	
5092	float32	Normalized Velocity Path 6	-	
5094	float32	Normalized Velocity Path 7	-	
5096	float32	Normalized Velocity Path 8	-	
5098	float32	Average Gain Path 1	dB	
5100	float32	Average Gain Path 2	dB	
5102	float32	Average Gain Path 3	dB	
5104	float32	Average Gain Path 4	dB	
5106	float32	Average Gain Path 5	dB	
5108	float32	Average Gain Path 6	dB	
5110	float32	Average Gain Path 7	dB	
5112	float32	Average Gain Path 8	dB	
5114	float32	Gain Path1 UP	dB	
5116	float32	Gain Path2 UP	dB	
5118	float32	Gain Path3 UP	dB	
5120	float32	Gain Path4 UP	dB	
5122	float32	Gain Path5 UP	dB	
5124	float32	Gain Path6 UP	dB	
5126	float32	Gain Path7 UP	dB	
5128	float32	Gain Path8 UP	dB	
5130	float32	Gain Path1 Down	dB	
5132	float32	Gain Path2 Down	dB	
5134	float32	Gain Path3 Down	dB	

5136	float32	Gain Path4 Down	dB	
5138	float32	Gain Path5 Down	dB	
5140	float32	Gain Path6 Down	dB	
5142	float32	Gain Path7 Down	dB	
5144	float32	Gain Path8 Down	dB	
5146	float32	Transit time down Path 1	ns	
5148	float32	Transit time down Path 2	ns	
5150	float32	Transit time down Path 3	ns	
5152	float32	Transit time down Path 4	ns	
5154	float32	Transit time down Path 5	ns	
5156	float32	Transit time down Path 6	ns	
5158	float32	Transit time down Path 7	ns	
5160	float32	Transit time down Path 8	ns	
5162	float32	Transit time up Path 1	ns	
5164	float32	Transit time up Path 2	ns	
5166	float32	Transit time up Path 3	ns	
5168	float32	Transit time up Path 4	ns	
5170	float32	Transit time up Path 5	ns	
5172	float32	Transit time up Path 6	ns	
5174	float32	Transit time up Path 7	ns	
5176	float32	Transit time up Path 8	ns	
5178	float32	Delta Time Path 1	ns	
5180	float32	Delta Time Path 2	ns	
5182	float32	Delta Time Path 3	ns	
5184	float32	Delta Time Path 4	ns	
5186	float32	Delta Time Path 5	ns	
5188	float32	Delta Time Path 6	ns	
5190	float32	Delta Time Path 7	ns	
5192	float32	Delta Time Path 8	ns	
5194	float32	Turbulent Intensity Path 1	%	
5196	float32	Turbulent Intensity Path 2	%	
5198	float32	Turbulent Intensity Path 3	%	
5200	float32	Turbulent Intensity Path 4	%	

5202	float32	Turbulent Intensity Path 5	%	
5204	float32	Turbulent Intensity Path 6	%	
5206	float32	Turbulent Intensity Path 7	%	
5208	float32	Turbulent Intensity Path 8	%	

10000	int16	Positive Totalizer MSB	m3	
10001	int16	Positive Totalizer LSB	m3	
10002	int16	Negative Totalizer MSB	m3	
10003	int16	Negative Totalizer LSB	m3	
10004	int16	Years	year	
10005	int16	Month	month	
10006	int16	Hours Day	day	
10007	int16	Hours	hours	
10008	int16	Minutes	minutes	
10009	int16	Seconds	seconds	
10010	int16	Board Status	-	
10011	int16	MeterStateVector	-	
10012	int16	Firmware Version	-	
10013	int16	Firmware Revision 1	-	
10014	int16	Firmware Revision 2	-	
10015	int16	Firmware Revision 3	-	
10016	int16	Checksum of Executable Code	-	
10017	int16	Checksum of Parameter Set	-	
10018	int16	Number of Times Parameter Set has sent	-	
10019	int16	Switch Settings	-	
10020	int16	Analog Input Status	-	
10051	int16	Performance 1	%	
10052	int16	Performance 2	%	
10053	int16	Performance 3	%	
10054	int16	Performance 4	%	
10055	int16	Performance 5	%	
10056	int16	Performance 6	%	

10057	int16	Performance 7	%	
10058	int16	Performance 8	%	
10059	int16	Average Up/Dn SNR Path 1	-	
10060	int16	Average Up/Dn SNR Path 2	-	
10061	int16	Average Up/Dn SNR Path 3	-	
10062	int16	Average Up/Dn SNR Path 4	-	
10063	int16	Average Up/Dn SNR Path 5	-	
10064	int16	Average Up/Dn SNR Path 6	-	
10065	int16	Average Up/Dn SNR Path 7	-	
10066	int16	Average Up/Dn SNR Path 8	-	
10067	int16	SNR Up 1	-	
10068	int16	SNR Up 2	-	
10069	int16	SNR Up 3	-	
10070	int16	SNR Up 4	-	
10071	int16	SNR Up 5	-	
10072	int16	SNR Up 6	-	
10073	int16	SNR Up 7	-	
10074	int16	SNR Up 8	-	
10075	int16	SNR Dn 1	-	
10076	int16	SNR Dn 2	-	
10077	int16	SNR Dn 3	-	
10078	int16	SNR Dn 4	-	
10079	int16	SNR Dn 5	-	
10080	int16	SNR Dn 6	-	
10081	int16	SNR Dn 7	-	
10082	int16	SNR Dn 8	-	
10083	int16	Path Status 1	-	
10084	int16	Path Status 2	-	
10085	int16	Path Status 3	-	
10086	int16	Path Status 4	-	
10087	int16	Path Status 5	-	
10088	int16	Path Status 6	-	
10089	int16	Path Status 7	-	

10090	int16	Path Status 8	-	
-------	-------	---------------	---	--

10.7.2 Register map of Daniel ultrasonic meter (Mark III electronics)

Register address	Data type	Description	Unit	Remark
62	int16	Chord A status		
63	int16	Chord B status		
64	int16	Chord C status		
65	int16	Chord D status		
66	int16	System status		
67	int16	Percentage of good batch firings (path A1).	%	
68	int16	Percentage of good batch firings (path B1).	%	
69	int16	Percentage of good batch firings (path C1).	%	
70	int16	Percentage of good batch firings (path D1).	%	
71	int16	Percentage of good batch firings (path A2).	%	
72	int16	Percentage of good batch firings (path B2).	%	
73	int16	Percentage of good batch firings (path C2).	%	
74	int16	Percentage of good batch firings (path D2).	%	
77	int16	Gain (path A1)		
78	int16	Gain (path A2)		
79	int16	Gain (path B1)		
80	int16	Gain (path B2)		
81	int16	Gain (path C1)		
82	int16	Gain (path C2)		
83	int16	Gain (path D1)		
84	int16	Gain (path D2)		
352	float32	Chord A flow velocity	m/s	
354	float32	Chord B flow velocity	m/s	
356	float32	Chord C flow velocity	m/s	
358	float32	Chord D flow velocity	m/s	

360	float32	Average flow velocity	m/s
362	float32	Chord A sound velocity.	m/s
364	float32	Chord B sound velocity.	m/s
366	float32	Chord C sound velocity.	m/s
368	float32	Chord D sound velocity.	m/s
370	float32	Average sound velocity.	m/s
394	float32	Low flow cut-off	m ³ /h
1500	int32	Forward volume at line conditions (integer portion).	m3
1502	int32	Reverse volume at line conditions (integer portion).	m3
10600	float32	Flow-condition temperature.	°C 0°
10602	float32	Flow-condition pressure	MPa
10624	float32	Flow-condition volumetric flow rate (includes expansion and profile-effect correction).	m ³ /h
10626	float32	Base-condition volumetric flow rate.	m ³ /h
L			

10.7.3 Register map of Flexim Fluxus ultrasonic meter

Register address	Data type	Description	Unit	Remark
1000	int16	Gas temperature status		
1001	float32	Gas temperature	°C	
1032	int16	Gas pressure status		
1033	float32	Gas pressure	bar	
1064	int16	Signal amplitude status		
1065	float32	Signal amplitude		
1080	int16	Velocity of sound status		
1081	float32	Velocity of sound	m/s	
1096	int16	Velocity of gas status		
1097	float32	Velocity of gas	m/s	

1112	int16	Volume flow rate at line conditions status		
1113	float32	Volume flow rate at line conditions	m³/h	
1128	int16	Volume flow totalizer at line conditions (positive) status		
1129	float32	Volume flow totalizer at line conditions (positive)	m ³	
1144	int16	Volume flow totalizer at line conditions (negative) status		
1145	float32	Volume flow totalizer at line conditions (negative)	m ³	
1160	int16	Volume flow rate at base conditions status		
1161	float32	Volume flow rate at base conditions	m³/h	

10.7.4 Register map of Sick-Maihak Flowsic-600 ultrasonic meter

Register address	Data type	Description	Unit	Remark
3002	int16	System control		
3003	int16	System status		
3004	int16	Path 1 status		
3005	int16	Path 2 status		
3006	int16	Path 3 status		
3007	int16	Path 4 status		
3008	int16	Path 1 valid samples		
3009	int16	Path 2 valid samples		
3010	int16	Path 3 valid samples		
3011	int16	Path 4 valid samples		
3012	int16	AGC level path 1A		
3013	int16	AGC level path 1B		
3014	int16	AGC level path 2A		
3015	int16	AGC level path 2B		
3016	int16	AGC level path 3A		
3017	int16	AGC level path 3B		
3018	int16	AGC level path 4A		
3019	int16	AGC level path 4B		

7001	float32	Volume flow rate at line conditions	m³/h
7002	float32	Volume flow rate at base conditions	m³/h
7003	float32	Velocity of sound	m/s
7004	float32	Gas velocity	m/s
7005	float32	Path 1 VOS	m/s
7006	float32	Path 2 VOS	m/s
7007	float32	Path 3 VOS	m/s
7008	float32	Path 4 VOS	m/s
7009	float32	Path 1 gas velocity	m/s
7010	float32	Path 2 gas velocity	m/s
7011	float32	Path 3 gas velocity	m/s
7012	float32	Path 4 gas velocity	m/s
7013	float32	SNR 1A	dB
7014	float32	SNR 1B	dB
7015	float32	SNR 1A	dB
7016	float32	SNR 1B	dB
7017	float32	SNR 1A	dB
7018	float32	SNR 1B	dB
7019	float32	SNR 1A	dB
7020	float32	SNR 1B	dB
7021	float32	Gas temperature	К
7022	float32	Gas pressure	bar (abs)
7036		Low flow cut-off	m³/h
7037		Adjust factor forward	
7038		Adjust factor reverse	
7039		Zero flow offset	m³/h

10.7.5 Register map of Krohne Altosonic V12 ultrasonic meter

NOTE: All the registers read by Uniflow-200 shall be configured in the Altosonic V12 as holding registers. Uniflow-200 read registers with Modbus command code 3.

Register address	Data type	Description	Unit	Remark
5000	int32	Test data		
5002	int32	System status		
5004	int32	Path 1 status		
5006	int32	Path 2 status		
5008	int32	Path 3 status		
5010	int32	Path 4 status		
5012	int32	Path 5 status		
5014	int32	Path 6 status		
5016	int32	Temperature status		
5018	int32	Totalizer status		
7000	float32	Test data		
7002	float32	Channel gain AB1	dB	
7004	float32	Channel gain AB2	dB	
7006	float32	Channel gain AB3	dB	
7008	float32	Channel gain AB4	dB	
7010	float32	Channel gain AB5	dB	
7012	float32	Channel gain AB6	dB	
7014	float32	Channel gain BA1	dB	
7016	float32	Channel gain BA2	dB	
7018	float32	Channel gain BA3	dB	
7020	float32	Channel gain BA4	dB	
7022	float32	Channel gain BA5	dB	
7024	float32	Channel gain BA6	dB	
7026	float32	Channel SNR AB1	dB	
7028	float32	Channel SNR AB2	dB	
7030	float32	Channel SNR AB3	dB	
7032	float32	Channel SNR AB4	dB	
7034	float32	Channel SNR AB5	dB	
7036	float32	Channel SNR AB6	dB	
7038	float32	Channel SNR BA1	dB	

7040	float32	Channel SNR BA2	dB	
7042	float32	Channel SNR BA3	dB	
7044	float32	Channel SNR BA4	dB	
7046	float32	Channel SNR BA5	dB	
7048	float32	Channel SNR BA6	dB	
7050	float32	Gas temperature	°C	
7052	float32	Gas dynamic viscosity	cP	
7054	float32	Gas density	kg/m ³	
7056	float32	Volume flow rate at line conditions	m³/s	
7058	float32	Gas velocity	m/s	
7060	float32	Velocity of sound	m/s	
7062	float32	Gas velocity path 1	m/s	
7064	float32	Gas velocity path 2	m/s	
7066	float32	Gas velocity path 3	m/s	
7068	float32	Gas velocity path 4	m/s	
7070	float32	Gas velocity path 5	m/s	
7072	float32	Gas velocity path 6	m/s	
7074	float32	Velocity of sound path 1	m/s	
7076	float32	Velocity of sound path 2	m/s	
7078	float32	Velocity of sound path 3	m/s	
7080	float32	Velocity of sound path 4	m/s	
7082	float32	Velocity of sound path 5	m/s	
7084	float32	Velocity of sound path 6	m/s	
7086	float32	Reliability path 1	%	
7088	float32	Reliability path 2	%	
7090	float32	Reliability path 3	%	
7092	float32	Reliability path 4	%	
7094	float32	Reliability path 5	%	
7096	float32	Reliability path 6	%	
7098	float32	Average gas velocity path 1	m/s	
7100	float32	Average gas velocity path 2	m/s	
7102	float32	Average gas velocity path 3	m/s	
7104	float32	Average gas velocity path 4	m/s	

7106	float32	Average gas velocity path 5	m/s	
7108	float32	Average gas velocity path 6	m/s	
7110	float32	Average velocity of sound path 1	m/s	
7112	float32	Average velocity of sound path 2	m/s	
7114	float32	Average velocity of sound path 3	m/s	
7116	float32	Average velocity of sound path 4	m/s	
7118	float32	Average velocity of sound path 5	m/s	
7120	float32	Average velocity of sound path 6	m/s	
7122	float32	Average velocity of sound	m/s	
7124	float32	Volume flow rate at line conditions	m³/h	
7126	float32	Volume flow rate standard deviation	%	
7128	float32	Volume flow rate standard deviation, running	%	
7130	float32	Velocity of sound standard deviation	%	
7132	float32	Gas velocity standard deviation path 1	%	
7134	float32	Gas velocity standard deviation path 2	%	
7136	float32	Gas velocity standard deviation path 3	%	
7138	float32	Gas velocity standard deviation path 4	%	
7140	float32	Gas velocity standard deviation path 5	%	
7142	float32	Gas velocity standard deviation path 6	%	
7144	float32	Velocity of sound standard deviation path 1	%	
7146	float32	Velocity of sound standard deviation path 2	%	
7148	float32	Velocity of sound standard deviation path 3	%	
7150	float32	Velocity of sound standard deviation path 4	%	
7152	float32	Velocity of sound standard deviation path 5	%	
7154	float32	Velocity of sound standard deviation path 6	%	
7504	float32	Meter constant forward		
7506	float32	Meter constant reverse		
7536	float32	Max flow rate forward	m ³ /s	
7538	float32	Max flow rate reverse	m³/s	
7540	float32	Low flow cut-off forward	m/s	
7542	float32	Low flow cut-off reverse	m/s	

8000	int64	Test data	
8004	int64	Volume flow totalizer at line conditions (forward)	m ^{3*} 1e-6
8008	int64	Volume flow totalizer at line conditions (reverse)	m ^{3*} 1e-6
8012	int64	Fault volume flow totalizer at line conditions (forward)	m ^{3*} 1e-6
8016	int64	Fault volume flow totalizer at line conditions (reverse)	m ³ *1e-6

10.7.6 Register map of Panametrics GC868 ultrasonic meter

Register address	Data type	Description	Unit	Remark
3	int32	Velocity of gas	m/s	m/s= int32 / 100
5	float32	Volume flow rate at line conditions	m³/h	
7	float32	Volume flow rate at base conditions	m³/h	
9	int32	Volume flow totalizer at line conditions (forward)	m ³	
11	int32	Volume flow totalizer at line conditions (reverse)	m ³	
13	int16	Divider for volume totalizers		
14	float32	Mass flow rate	kg/h	
16	int32	Mass flow totalizer (forward)	kg	
18	int32	Mass flow totalizer (reverse)	kg	
20	int16	Divider for mass totalizers		
21	int32	Timer		
23	int16	Error code		
24	int32	Velocity of sound	m/s	m/s= int32 / 1000
26	int32	Density	kg/m ³	
28	int32	Signal strength upstream		'=int32 / 10
30	int32	Signal strength downstream		'=int32 / 10
32	int32	Gas temperature	°C	
34	int32	Gas pressure	bar	
36	float32	Signal quality upstream		
38	float32	Signal quality downstream		
40	float32	Amplitude discrimination upstream		
42	float32	Amplitude discrimination downstream		

44	float32	SNR upstream	
46	float32	SNR downstream	

10.7.7 Register map of Instromet QSonic Uniform ultrasonic meter

Uniflow-200 receives U_DATA data package (message code: 37) from Instromet QSonic meters set to communicate according to Uniform protocol.

See details in documents: Elster-Instromet Digital Communication: UNIFORM Protocol (Measured Data) Document Code: 99.01.02C.02/2/G

Register address	Data type	Description	Unit	Remark
0	int16	InstrType		
1	int16	NumPath		
2	int16	SequenceNum LO		
3	int16	SequenceNum HI		
4	int16	SampleRate		
5	int16	ValidSamples L1		
6	int16	ValidSamples L2		
7	int16	ValidSamples L3		
8	int16	ValidSamples L4		
9	int16	ValidSamples L5		
10	int16	ValidSamples L6		
11	int16	ValidSamples L7		
12	int16	ValidSamples L8		
13	int16	AGC L1A	dB	
14	int16	AGC L1B	dB	
15	int16	AGC L2A	dB	
16	int16	AGC L2B	dB	
17	int16	AGC L3A	dB	
18	int16	AGC L3B	dB	
19	int16	AGC L4A	dB	

10.7.8 Register map of Instromet QSonicPlus ultrasonic meter

20	int16	AGC L4B	dB	
21	int16	AGC L1A	dB	
22	int16	AGC L1B	dB	
23	int16	AGC L2A	dB	
24	int16	AGC L2B	dB	
25	int16	AGC L3A	dB	
26	int16	AGC L3B	dB	
27	int16	AGC L4A	dB	
28	int16	AGC L4B	dB	
29	int16	SNR L1A	dB	
30	int16	SNR L1B	dB	
31	int16	SNR L2A	dB	
32	int16	SNR L2B	dB	
33	int16	SNR L3A	dB	
34	int16	SNR L3B	dB	
35	int16	SNR L4A	dB	
36	int16	SNR L4B	dB	
37	int16	SNR L1A	dB	
38	int16	SNR L1B	dB	
39	int16	SNR L2A	dB	
40	int16	SNR L2B	dB	
41	int16	SNR L3A	dB	
42	int16	SNR L3B	dB	
43	int16	SNR L4A	dB	
44	int16	SNR L4B	dB	
45	int16	OperationalStatus		
46	int16	Status2		
200	int32	Diabits L1		
201	int32	Diabits L2		
202	int32	Diabits L3		
203	int32	Diabits L4		
204	int32	Diabits L5		

205	int32	Diabits L6	
206	int32	Diabits L7	
207	int32	Diabits L8	
208	int32	FwdVolume	
209	int32	RevVolume	
210	int32	FwdErrVolume	
211	int32	RevErrVolume	
212	int32	Checksum1	
213	int32	Checksum2	
400	float32	Speed of Sound	m/s
401	float32	Velocity of gas	m/s
402	float32	Pressure	kPa
403	float32	Temperature	К
404	float32	QLine	m3/h
405	float32	QBase	m3/h
406	float32	Cpp L1	m/s
407	float32	Cpp L2	m/s
408	float32	Cpp L3	m/s
409	float32	Cpp L4	m/s
410	float32	Cpp L5	m/s
411	float32	Cpp L6	m/s
412	float32	Cpp L7	m/s
413	float32	Срр L8	m/s
414	float32	Vpp L1	m/s
415	float32	Vpp L2	m/s
416	float32	Vpp L3	m/s
417	float32	Vpp L4	m/s
418	float32	Vpp L5	m/s
419	float32	Vpp L6	m/s
420	float32	Vpp L7	m/s
421	float32	Vpp L8	m/s
422	float32	Spare	

423	float32	SwirlAngle	
424	float32	MeterFactor	

10.7.9 Register map of RMA Ecosonic12 ultrasonic meter

Register address	Data type	Description	Unit	Remark
1100	int32	Tot. volume FR1		
1102	int32	Tot. volume FR2		
1104	int32	Tot. volumeErr FR1		
1106	int32	Tot. volumeErr FR2		
1508	float32	Qm vol. flow rate	m3/h	
1510	float32	Velocity of Gas average	m/s	
1512	float32	SoS average	m/s	
1514	float32	Pressure (mbarA)	mbarA	
1516	float32	Temperature	°C	
1518	float32	Pressure (barA)	barA	
2000	int16	System state		
3000	int16			if 0 not to download
3001	int16	PT download request		if = 0 not to download PT if <> 0 download PT
3014	int16	AGC Path1 DirA	dB	
3015	int16	AGC Path1 DirB	dB	
3016	int16	AGC Path2 DirA	dB	
3017	int16	AGC Path2 DirB	dB	
3018	int16	AGC Path3 DirA	dB	
3019	int16	AGC Path3 DirB	dB	
3020	int16	AGC Path4 DirA	dB	
3021	int16	AGC Path4 DirB	dB	
3022	int16	AGC Path5 DirA	dB	
3023	int16	AGC Path5 DirB	dB	

3024	int16	AGC Path6 DirA	dB	
3025	int16	AGC Path6 DirB	dB	
3026	float32	Speed of Sound Path1	m/s	
3028	float32	Speed of Sound Path2	m/s	
3030	float32	Speed of Sound Path3	m/s	
3032	float32	Speed of Sound Path4	m/s	
3034	float32	Speed of Sound Path5	m/s	
3036	float32	Speed of Sound Path6	m/s	
3050	float32	Velocity of gas Path1	m/s	
3052	float32	Velocity of gas Path2	m/s	
3054	float32	Velocity of gas Path3	m/s	
3056	float32	Velocity of gas Path4	m/s	
3058	float32	Velocity of gas Path5	m/s	
3060	float32	Velocity of gas Path6	m/s	
3062	float32	SNR Path 1 DirA		
3064	float32	SNR Path 1 DirB		
3066	float32	SNR Path 2 DirA		
3068	float32	SNR Path 2 DirB		
3070	float32	SNR Path 3 DirA		
3072	float32	SNR Path 3 DirB		
3074	float32	SNR Path 4 DirA		
3076	float32	SNR Path 4 DirB		
3078	float32	SNR Path 5 DirA		
3080	float32	SNR Path 5 DirB		
3082	float32	SNR Path 6 DirA		
3084	float32	SNR Path 6 DirB		
3086	int16	Performance Path1	%	
3087	int16	Performance Path2	%	
3088	int16	Performance Path3	%	
3089	int16	Performance Path4	%	

3090	int16	Performance Path5	%	
3091	int16	Performance Path6	%	
1518	float32	Absolute Pressure (barA) to download (read/write)	barA	
1524	float32	Temperature to download (read/write)	°C	

10.7.10 Register map of RMG USZ08 ultrasonic meter

Register address	Data type	Description	Unit	Remark
3000	float64	Tot. volume d1	see 7032	
3004	float64	Tot. volume d2	see 7032	
3008	float64	Tot. volumeErr d1	see 7032	
3012	float64	Tot. volumeErr d2	see 7032	
4040	int16	path-1 status		
4041	int16	path-2 status		
4042	int16	path-3 status		
4043	int16	path-4 status		
4044	int16	path-5 status		
4045	int16	path-6 status		
4046	int16	path-7 status		
4047	int16	path-8 status		
6020	float32	Speed of Sound Path1	m/s	
6022	float32	Speed of Sound Path2	m/s	
6024	float32	Speed of Sound Path3	m/s	
6026	float32	Speed of Sound Path4	m/s	
6028	float32	Speed of Sound Path5	m/s	
6030	float32	Speed of Sound Path6	m/s	
6032	float32	Speed of Sound Path7	m/s	
6034	float32	Speed of Sound Path8	m/s	

6040	float32	p1.1 AGC level	dB
			dB
6042	float32	p2.1 AGC level	
6044	float32	p3.1 AGC level	dB
6046	float32	p4.1 AGC level	dB
6048	float32	p5.1 AGC level	dB
6050	float32	p6.1 AGC level	dB
6052	float32	p7.1 AGC level	dB
6054	float32	p8.1 AGC level	dB
6060	float32	p1.2 AGC level	dB
6062	float32	p2.2 AGC level	dB
6064	float32	p3.2 AGC level	dB
6066	float32	p4.2 AGC level	dB
6068	float32	p5.2 AGC level	dB
6070	float32	p6.2 AGC level	dB
6072	float32	p7.2 AGC level	dB
6074	float32	p8.2 AGC level	dB
6200	float32	Velocity vc1	m/s
6202	float32	Velocity vc2	m/s
6204	float32	Velocity vc3	m/s
6206	float32	Velocity vc4	m/s
6208	float32	Velocity vc5	m/s
6210	float32	Velocity vc6	m/s
6212	float32	Velocity vc7	m/s
6214	float32	Velocity vc8	m/s
6220	float32	vw (raw gas velocity)	m/s
6222	float32	vwc (ave. gas velocity)	m/s
6224	float32	Qm (raw flow rate)	m3/h
6226	float32	Qmc (corr. flow rate)	m3/h
6228	float32	SoS average	m/s
6230	float32	Qm vol. flow rate	

			m3/h	
6264	float32	Qm damped	m3/h	
6640	float32	p1.1 SNR	dB	
6642	float32	p2.1 SNR	dB	
6644	float32	p3.1 SNR	dB	
6646	float32	p4.1 SNR	dB	
6648	float32	p5.1 SNR	dB	
6650	float32	p6.1 SNR	dB	
6652	float32	p7.1 SNR	dB	
6654	float32	p8.1 SNR	dB	
6660	float32	p1.2 SNR	dB	
6662	float32	p2.2 SNR	dB	
6664	float32	p3.2 SNR	dB	
6666	float32	p4.2 SNR	dB	
6668	float32	p5.2 SNR	dB	
6670	float32	p6.2 SNR	dB	
6672	float32	p7.2 SNR	dB	
6674	float32	p8.2 SNR	dB	
7000	int16	Valid samples G1		
7001	int16	Valid samples G2		
7002	int16	Valid samples G3		
7003	int16	Valid samples G4		
7004	int16	Valid samples G5		
7005	int16	Valid samples G6		
7006	int16	Valid samples G7		
7007	int16	Valid samples G8		
7030	int16	Velocity unit		0x0000 = m/s 0x0001 = ft/s
7031	int16	Flow rate unit		0x0000 = m3/h 0x0001 = acfh

7032	int16	Volume unit		0x0000 = m3 0x0001 = acf
------	-------	-------------	--	-----------------------------

10.7.11 Register map of Siemens 1010GCGDN ultrasonic meter

Register address	Data type	Description	Unit	Remark
41001	float32	Volume flow rate at line conditions, path 1	m³/h	
41003	float32	Volume flow rate at line conditions, path 2	m³/h	
41005	float32	Volume flow rate at line conditions	m³/h	
41007	float32	Average volume flow rate at line conditions	m³/h	
41009	float32	Raw volume flow rate at line conditions, path 1	m³/h	
41011	float32	Raw volume flow rate at line conditions, path 2	m³/h	
41013	float32	Gas velocity	m/s	
41015	float32	Volume flow totalizer at line conditions	m ³	
41017	float32	Velocity of sound path 1	m/s	
41019	float32	Velocity of sound path 2	m/s	
41021	float32	Average velocity of sound	m/s	
41023	float32	Specific gravity		
41025	float32	Base specific gravity		
41027	float32	Temperature RTD1	°C	
41029	float32	Temperature RTD1	°C	
41031	float32	Delta time path 1	uS	
41033	float32	Delta time path 2	uS	
41035	float32	Analogue input 1		
41037	float32	Analogue input 2		
41039	float32	Analogue input 3		
41041	float32	Analogue input 4		
3000130004	char	Site name		
30005	char	Date		
30007	char	Time		
30009	int16	Signal strength path 1		

30010	int16	Signal strength path 2	
30011	int16	Average signal strength	
30012	int16	Aeration	
30013	int32	Status/Alarm path 1	
30015	int32	Status/Alarm path 2	
30017	int32	Status/Alarm site	

10.7.12 Register map of ABB NGC820X gas chromatograph

Register number	Data type	Description	Unit	Remark
3034	int16	Stream last analyzed		
3041	int16	Start of cycle month		
3042	int16	Start of cycle day		
3043	int16	Start of cycle year		
3044	int16	Start of cycle hour		
3045	int16	Start of cycle minute		
3058	int16	New data flag		
3059	int16	Analysis/calibration flag		
3061	int16	Stream last analyzed		
7001	float32	Propane	mole%	
7002	float32	I-butane	mole%	
7003	float32	N-butane	mole%	
7004	float32	Neo-pentane	mole%	
7005	float32	I-pentane	mole%	
7006	float32	N-pentane	mole%	
7007	float32	C6+	mole%	
7008	float32	Nitrogen	mole%	
7009	float32	Methane	mole%	

7010	float32	Carbon-dioxide	mole%
7011	float32	Ethane	mole%
7012	float32	Hexane	mole%
7013	float32	Heptane	mole%
7014	float32	Octane	mole%
7015	float32	Nonane	mole%
7033	float32	Superior heating value	MJ/m ³
7034	float32	Inferior heating value	MJ/m ³
7035	float32	Relative density	

10.7.13 Register map of ABB2 gas chromatograph

Register number	Data type	Description	Unit	Remark
30001	int16	Stream 1 sample time		
30002	int16	Stream 1 sample time		
30003	int16	Stream 1 sample time		
30004	int16	Stream 1 Hydrogen	mole %	
30005	int16	Stream 1 I-butane	mole %	
30006	int16	Stream 1 N-butane	mole %	
30007	int16	Stream 1 1,3-butadiene	mole %	
30008	int16	Stream 1 Total C5	mole %	
30009	int16	Stream 1 Total C6	mole %	
30010	int16	Stream 2 sample time		
30011	int16	Stream 2 sample time		
30012	int16	Stream 2 sample time		
30014	int16	Stream 2 I-butane	mole %	
30015	int16	Stream 2 N-butane	mole %	
30016	int16	Stream 2 1,3-butadiene	mole %	
30017	int16	Stream 2 Total C5	mole %	

30018	int16	Stream 2 Total C6	mole %	
30021	int16	Stream 21 Air with nitrogen	mole %	
30022	int16	Stream 21 Methane	mole %	
30023	int16	Stream 21 CO2	mole %	
30024	int16	Stream 21 Ethylene	mole %	
30025	int16	Stream 21 Ethane	mole %	
30026	int16	Stream 21 Propylene	mole %	
30027	int16	Stream 21 Propadiene	mole %	
30031	int16	Stream 22 Air with nitrogen	mole %	
30032	int16	Stream 22 Methane	mole %	
30033	int16	Stream 22 CO2	mole %	
30034	int16	Stream 22 Ethylene	mole %	
30035	int16	Stream 22 Ethane	mole %	
30036	int16	Stream 22 Propylene	mole %	
30037	int16	Stream 22 Propadiene	mole %	

10.7.14 Register map of Daniel Danalyzer gas chromatograph

Register number	Data type	Description	Unit	Remark
3034	int16	Stream last analysed		
3041	int16	Start of cycle month		
3042	int16	Start of cycle day		
3043	int16	Start of cycle year		
3044	int16	Start of cycle hour		
3045	int16	Start of cycle minute		
3058	int16	New data flag		
3059	int16	Analysis/calibration flag		

3061	int16	Stream last analyzed	
7001	float32	C6+	mole%
7002	float32	Propane	mole%
7003	float32	I-butane	mole%
7004	float32	N-butane	mole%
7005	float32	Neo-pentane	mole%
7006	float32	I-pentane	mole%
7007	float32	N-pentane	mole%
7008	float32	Nitrogen	mole%
7009	float32	Methane	mole%
7010	float32	Carbon-dioxide	mole%
7011	float32	Ethane	mole%
7033	float32	Superior heating value	MJ/m ³
7035	float32	Relative density	
7087	float32	Inferior heating value	MJ/m ³

10.7.15 Register map of Yamatake HGC gas chromatograph

Register number	Data type	Description	Unit	Remark
3034	int16	Stream last analysed		
3041	int16	Start of cycle month		
3042	int16	Start of cycle day		
3043	int16	Start of cycle year		
3044	int16	Start of cycle hour		
3045	int16	Start of cycle minute		

3058	int16	New data flag	
3059	int16	Analysis/calibration flag	
3061	int16	Stream last analyzed	
7001	float32	C6+	mole%
7002	float32	Propane	mole%
7003	float32	I-butane	mole%
7004	float32	N-butane	mole%
7005	float32	Neo-pentane	mole%
7006	float32	I-pentane	mole%
7007	float32	N-pentane	mole%
7008	float32	Nitrogen	mole%
7009	float32	Methane	mole%
7010	float32	Carbon-dioxide	mole%
7011	float32	Ethane	mole%
7033	float32	Superior heating value	MJ/m ³
7035	float32	Relative density	
7087	float32	Inferior heating value	MJ/m ³

10.7.16 Register map of Yokogawa gas chromatograph

Register number	Data type	Description	Unit	Remark
41001	float32	C6+ stream 1	mole%	
41003	float32	Propane stream 1	mole%	
41005	float32	I-butane stream 1	mole%	
41007	float32	N-butane stream 1	mole%	
41009	float32	I-pentane stream 1	mole%	
41011	float32	N-pentane stream 1	mole%	

41013	float32	Nitrogen stream 1	mole%
41015	float32	Methane stream 1	mole%
41017	float32	Carbon-dioxide stream 1	mole%
41019	float32	Ethane stream 1	mole%
41021	float32	C6+ stream 2	mole%
41023	float32	Propane stream 2	mole%
41025	float32	I-butane stream 2	mole%
41027	float32	N-butane stream 2	mole%
41029	float32	I-pentane stream 2	mole%
41031	float32	N-pentane stream 2	mole%
41033	float32	Nitrogen stream 2	mole%
41035	float32	Methane stream 2	mole%
41037	float32	Carbon-dioxide stream 2	mole%
41039	float32	Ethane stream 2	mole%
41041	float32	C6+ stream 3	mole%
41043	float32	Propane stream 3	mole%
41045	float32	I-butane stream 3	mole%
41047	float32	N-butane stream 3	mole%
41049	float32	I-pentane stream 3	mole%
41051	float32	N-pentane stream 3	mole%
41053	float32	Nitrogen stream 3	mole%
41055	float32	Methane stream 3	mole%
41057	float32	Carbon-dioxide stream 3	mole%
41059	float32	Ethane stream 3	mole%
41061	float32	C6+ stream 4	mole%
41063	float32	Propane stream 4	mole%
41065	float32	I-butane stream 4	mole%
41067	float32	N-butane stream 4	mole%
41069	float32	I-pentane stream 4	mole%
41071	float32	N-pentane stream 4	mole%
41073	float32	Nitrogen stream 4	mole%
41075	float32	Methane stream 4	mole%
41077	float32	Carbon-dioxide stream 4	mole%

41079	float32	Ethane stream 4	mole%	
-------	---------	-----------------	-------	--

10.7.17 Register map of Emerson 3095FB multiparameter transmitter

Register number	Data type	Description	Unit	Remark
1003	coil	Calibration flag		
1031	coil	Restore factory default setting for DP		
1032	coil	Restore factory default setting for SP		
1033	coil	Restore factory default setting for PT		
1051	coil	Transmitter critical alarm		
1052	coil	Transmitter warning		
7401	float32	DP (differential pressure)		
7402	float32	SP (static pressure)		
7403	float32	PT (temperature)		
7419	float32	DP offset		
7420	float32	DP span		
7421	float32	DP damping		
7422	float32	SP offset		
7423	float32	SP span		
7424	float32	SP damping		
7425	float32	PT offset		
7426	float32	PT span		
7427	float32	PT damping		

10.7.18 Register map of Krohne MFC300 mass flow meter transmitter

Register number	Data type	Description	Unit	Remark
30000	float32	Flow Velocity	m/s	

30002	float32	Volume Flow	m3/h	see note
30004	float32	Mass Flow	kg/h	see note
30006	float32	Temperature	°C	see note
30008	float32	Density	kg/m3	see note
30010	float32	Concentration 1		
30012	float32	Concentration 2 or Diagnosis 3		
30014	float32	Concentration Flow 1		
30016	float32	Concentration Flow 2		
30018	float32	Diagnosis 1		
30020	float32	Diagnosis 2		
30022	float32	Display Channel 1 Represents the value on the first line of the first measurement screen in SI units		
30024	float32	Display Channel 2 Represents the value on the first line of the second measurement screen in SI units		
30026	float32	Operating time	S	
30050	float64	Counter 1	m3 or kg	see note
30054	float64	Counter 2	m3 or kg	see note
30058	float64	Counter 3 Note: this counter is only available for converter with IO2!	m3 or kg	see note
30062	byte4	Long Status Sensor		
30064	byte4	Long Status Device		

NOTE:

- Unit of volume flow must be set to m3/h and the unit of mass flow must be set to kg/h.

- Mass flow, density and temperature are assigned to internal Modbus registers of the flow computer. These Modbus registers then shall be configured as Modbus signals and can be utilized in stream setup as input signals for flow calculation.

- Units of Counters 1, 2, 3 are depending on the settings in FMC300.

10.7.19 Register map of Emerson Micromotion mass flow meter

Ŭ.	Data type	Description	Unit	Remark
39	int16	Standard or special mass flow unit		

40	int16	Density unit	
41	int16	Temperature unit	
42	int16	Standard or special volume unit	
44	int16	Pressure unit	
45	int16	Standard or special mass total or inventory unit	
46	int16	Standard or special volume total or inventory unit	
247	float32	Mass flow rate	
249	float32	Density	see note
251	float32	Temperature	see note
253	float32	Volume flow rate	
257	float32	Pressure (internally derived)	see note
259	float32	Mass total	
261	float32	Volume total	
263	float32	Mass inventory	
265	float32	Volume inventory	
422	int16	bit4 flow direction	

NOTE: Mass flow, density, pressure and temperature are assigned to internal Modbus registers of the flow computer. These Modbus registers then shall be configured as Modbus signals and can be utilized in stream setup as input signals for flow calculation.

Annex A. Reports

Archive reports naming conventions

The archive report files can be transferred from the UNIFLOW-200 to external device in two ways.

- reports are transferred to serial or USB ports from the menu Flow > Data transfer.
 - reports are read by UNIArchive program.

The naming convention for the reports and report file names is as follows.

Content of the report	Report name on the Flow - > Data transfer menu	File name in UNIArchive
Limited set of daily data for the current month	Month (daily short) (month shall be selected in	nnstr_streamname_yyyy_mm_dd_daily.txt Example: 01str_M123_2013_04_12_daily.txt
Limited set of daily data for the previous months	separate field, previous 12 month data are available for selection)	nnstr_streamname_yyyy_mm_daily.txt Example: 01str_M123_2013_03_daily.txt
Limited set of hourly data for the current month	Month (hourly short) (month shall be selected in	nnstr_streamname_yyyy_mm_dd_hourly.txt Example: 01str_M123_2013_04_12_hourly.txt
Limited set of hourly data for the previous months	separate field, previous 12 month data are available for selection)	nnstr_streamname_yyyy_mm_hourly.txt Example: 01str_M123_2013_03_hourly.txt
User defined set No.1 of daily data for the current month	Month (daily defined 1) (month shall be selected in	01rp_yyyy_mm_dd_daily.txt Example: 01rp_2013_04_12_daily.txt
User defined set No.1 of daily data for the previous month	separate field, previous 12 month data are available for selection)	01rp_yyyy_mm_daily.txt Example: 01rp_2013_03_daily.txt
User defined set No.1 of hourly data for the current month	Month (hourly defined 1) (month shall be selected in	01rp_yyyy_mm_dd_hourly.txt Example: 01rp_2013_04_12_hourly.txt
User defined set No.1 of hourly data for the previous month	separate field, previous 12 month data are available for selection)	01rp_yyyy_mm_hourly.txt Example: 01rp_2013_03_hourly.txt
User defined set No.2 of daily data for the current month	Month (daily defined 2) (month shall be selected in	02rp_yyyy_mm_dd_daily.txt Example: 02rp_2013_04_12_daily.txt
User defined set No.2 of daily data for the previous month	separate field, previous 12 month data are available for selection)	02rp_yyyy_mm_daily.txt Example: 02rp_2013_03_daily.txt
User defined set No.2 of hourly data for the current month	Month (hourly defined 2) (month shall be selected in	02rp_yyyy_mm_dd_hourly.txt Example: 02rp_2013_04_12_hourly.txt
User defined set No.2 of hourly data for the previous month	separate field, previous 12 month data are available for selection)	02rp_yyyy_mm_hourly.txt Example: 02rp_2013_03_hourly.txt
Hourly data for the indicated month for stream <i>nn</i>	Month (hourly) (month and stream shall be selected in separate field)	<i>yyyy_mm</i> _month_hourly_ <i>nn</i> str.txt Example: 2013_04_month_hourly_01str.txt
Shift data for the indicated month for all 12 streams	Month (shift) (month shall be selected in separate field)	<i>yyyy_mm</i> _month_shift.txt Example: 2013_04_month_shift.txt

Daily data for the indicated month for all 12 streams	Month (daily) (month shall be selected in separate field)	<i>yyyy_mm_</i> month_daily.txt Example: 2013_04_month_daily.txt
Multiday data for the indicated month for all 12 streams	Month (multiday) (month shall be selected in separate field)	<i>yyyy_mm_</i> month_multiday.txt Example: 2013_04_month_multiday.txt
Monthly data for the indicated year for all 12 streams	Year (monthly) (year shall be selected in separate field)	<i>yyyy_</i> monthly.txt Example: 2013_monthly.txt
Alarm log	Logs	alarmlog.txt
Event log	(all three logs transferred)	eventlog.txt
Downloaded gas composition		downloadlog.txt
Monthly batch data for the selected month	Monthly batches	batch.txt
Meter serial test data. The last 10 serial test reports are stored.	Meter serial test	meterserialtest.txt
Limited set of hourly data for the current day. The content of the report is identical with the Month (hourly short) report but data included for the previous day only.	Prev. day (hourly short) (stream shall be selected in separate field)	<i>nn</i> strd_ <i>streamname</i> _previous_day_hourly.txt Example: 01strd_M123_previous_day_hourly.txt
Limited set of hourly data for the previous day. The content of the report is identical with the Month (hourly short) report but data included for the current day only.	Cur. day (hourly short) (stream shall be selected in separate field)	<i>nn</i> strd_ <i>streamname_yyyy_mm_dd_</i> hourly.txt Example: 01strd_M123_2013_04_12_hourly.txt
User defined set No.1 of hourly data for the previous day. The content of the report is identical with the Month (hourly defined 1) report but data included for the previous day only.	Prev. day (hourly defined 1)	01rpd_previous_day_hourly.txt Example: 01rpd_previous_day_hourly.txt
User defined set No.1 of hourly data for the current day. The content of the report is identical with the Month (hourly defined 1) report but data included for the current day only.	Cur. day (hourly defined 1)	01rpd_ <i>yyyyy_mm_dd</i> _hourly.txt Example: 01rpd_2013_04_12_hourly.txt
User defined set No.2 of hourly data for the previous day. The content of the report is identical with the Month (hourly defined 2) report but data included for the previous day only.	Prev. day (hourly defined 2)	02rpd_previous_day_hourly.txt Example: 02rpd_previous_day_hourly.txt
User defined set No.2 of hourly data for the current day. The content of the report is identical with the Month (hourly defined 2)	Cur. day (hourly defined 2)	02rpd_ <i>yyyyy_mm_dd_</i> hourly.txt 02rpd_2013_04_12_hourly.txt

report but data included for the current day only.		
User defined set No.3 of hourly data for the previous day.	Prev. day (hourly defined 3)	03rpds_previous_day_hourly.txt Example: 03rpds_previous_day_hourly.txt
User defined set No.3 of hourly data for the current day.	Cur. day (hourly defined 3)	03rpds_ <i>yyyy_mm_dd_</i> hourly.txt Example: 03rpds_2013_04_12_hourly.txt
User defined set No.4 to 10 of hourly data for the previous day.	Prev. day (hourly defined 4 to 10)	04 to 10rpds_previous_day_hourly.txt Example: 05rpds_previous_day_hourly.txt
User defined set No.4 to 10 of hourly data for the current day.	Cur. day (hourly defined 4 to 10)	04 to 10rpds_ <i>yyyy_mm_dd_</i> hourly.txt Example: 05rpds_2013_04_12_hourly.txt
where: <i>nn</i> – stream number		where: nn – stream number yyyy – year mm – month dd – day streamname – stream name as entered in the Parameters -> Stream -> Physical stream and Parameters -> Stream -> Virtual stream menu

Month (dai Previous m	-	s in dail	y details	2013.07.0	01 06:00	-	
1PTYXY							
upp of floumotor	======================================	====== bine flow	======================================				
Ype of flowmeter: Machine:			MFC_200-0	53			
Branch:	Tar	if_1 2.st	r.				
Time	UVOL	CVOL	Energy	P_avg.	T_avg.	K_avg.	Inf.c.
- 013/06/02 06:00	m3 683941	Sm3 7686908	GJ 261474	barA 26.005	oC 380.00	- 1.0074	MJ/m3 34.01
013/06/03 06:00	683925	7686730	261469	26.005	380.00	1.0074	34.01
013/06/04 06:00	683933	7686818	261472	26.005	380.00	1.0074	34.01
013/06/05 06:00	683934	7686819	261471	26.005	380.00	1.0074	34.01
013/06/06 06:00	681336	7657637	260478	26.005	380.00	1.0074	34.01
013/06/07 06:00	17011	191192	6504	26.005	380.00	1.0074	34.01
013/06/08 06:00	683819	7685529	261428	26.005	380.00	1.0074	34.01
013/06/09 06:00	55858	627801	21355	26.005	380.00	1.0074	34.010
013/06/10 06:00	0	0	0	26.005	380.00	1.0074	34.01
013/06/11 06:00	*	*	*	*	*	*	
013/06/12 06:00	*	*	*	*	*	*	
013/06/13 06:00	*	*	*	*	*	*	
013/06/14 06:00 013/06/15 06:00	*	*	*	*	*	*	
013/06/16 06:00	*	*	*	*	*	*	;
013/06/17 06:00	*	*	*	*	*	*	;
013/06/18 06:00	*	*	*	*	*	*	
013/06/19 06:00	*	*	*	*	*	*	;
013/06/20 06:00	*	*	*	*	*	*	
013/06/21 06:00	*	*	*	*	*	*	;
013/06/22 06:00	*	*	*	*	*	*	,
013/06/23 06:00	*	*	*	*	*	*	;
013/06/24 06:00	*	*	*	*	*	*	,
013/06/25 06:00	*	*	*	*	*	*	-
013/06/26 06:00	*	*	*	*	*	*	,
013/06/27 06:00	*	*	*	*	*	*	
013/06/28 06:00 013/06/29 06:00	*	*	*	*	*	*	
013/06/30 06:00	*	*	*	*	*	*	,
013/07/01 06:00	0	0	0	26.005	380.00	1.0074	34.01
revious month flo							
VOL: 4173757	sm3						
VOL: 46	909434	mЗ					
nergy: 1	595651	GJ					
remium CVOL:	0	m3					
revious month ave	rages						
	6.0050	bar					
average: 38	0.0000 °C						
average:	1.0074 -						
revious month max	imal hour	ly correc	ted volume	e			
VOL hourly max:	32028	5 m	3				
ax_month:		6 mo	nth				
lax_day:		1 da	У				
lax_hour:	1	2 ho	ur				
revious month							
low time:		19 hours					
ault flow time:	146.46	19 hours					

Month (daily short) report example

	(hourly short) ous month flow		lv detail	s 2013.07	.01 06:00	_	
		=======	========	=======			
L1PTYXY							
 Type of flowme	tor.	bine flow	======================================				
Machine:		FLOW-200 1		63			
Branch:		if_1 2.st		05			
Time	UVOL	CVOL	Energy	P avg.	T avq.	K avg.	Inf.c.
-	m3	Sm3	GJ	barA	oC	-	MJ/m3
2013/06/01 07:		320284	10895	26.005	380.00	1.0074	34.01
2013/06/01 08:		320284	10894	26.005	380.00	1.0074	34.01
2013/06/01 09:		320284	10895	26.005	380.00	1.0074	34.01
2013/06/01 10:	00 28497	320284	10894	26.005	380.00	1.0074	34.01
2013/06/01 11:	00 28497	320284	10895	26.005	380.00	1.0074	34.01
2013/06/01 12:	28497	320285	10895	26.005	380.00	1.0074	34.01
2013/06/01 13:	00 28497	320284	10894	26.005	380.00	1.0074	34.01
2013/06/01 14:	00 28498	320284	10895	26.005	380.00	1.0074	34.01
2013/06/01 15:		320284	10895	26.005	380.00	1.0074	34.01
2013/06/01 16:	00 28497	320284	10894	26.005	380.00	1.0074	34.01
2013/06/01 17:	00 28497	320284	10895	26.005	380.00	1.0074	34.01
2013/06/01 18:	00 28497	320284	10895	26.005	380.00	1.0074	34.01
2013/06/01 19:	00 28498	320284	10894	26.005	380.00	1.0074	34.01
2013/06/01 20:	00 28497	320284	10895	26.005	380.00	1.0074	34.01
2013/06/01 21:	00 28497	320285	10895	26.005	380.00	1.0074	34.01
2013/06/01 22:	00 28497	320284	10894	26.005	380.00	1.0074	34.01
2013/06/01 23:	00 28498	320284	10895	26.005	380.00	1.0074	34.01
2013/06/02 00:		320284	10895	26.005	380.00	1.0074	34.01
2013/06/02 01:		320284	10894	26.005	380.00	1.0074	34.01
2013/06/02 02:		320284	10895	26.005	380.00	1.0074	34.01
2013/06/02 03:		320284	10894	26.005	380.00	1.0074	34.01
2013/06/02 04:		320284	10895	26.005	380.00	1.0074	34.01
2013/06/02 05:		320285	10895	26.005	380.00	1.0074	34.01
 2013/06/30 07:	00 *	*	*	*	*	*	
2013/06/30 08:		*	*	*	*	*	
2013/06/30 09:		*	*	*	*	*	
2013/06/30 10:		*	*	*	*	*	
2013/06/30 11:		*	*	*	*	*	
2013/06/30 12:		*	*	*	*	*	
2013/06/30 13:		*	*	*	*	*	
2013/06/30 14:		*	*	*	*	*	
2013/06/30 15:		*	*	*	*	*	
2013/06/30 16:		*	*	*	*	*	
2013/06/30 17:		*	*	*	*	*	
2013/06/30 18:		*	*	*	*	*	
2013/06/30 19:		*	*	*	*	*	
2013/06/30 20:		*	*	*	*	*	
2013/06/30 21:		*	*	*	*	*	
2013/06/30 22:		*	*	*	*	*	
013/06/30 23:		*	*	*	*	*	
013/07/01 00:		*	*	*	*	*	
013/07/01 00:		*	*	*	*	*	
013/07/01 01:		*	*	*	*	*	
013/07/01 02:		*	*	*	*	*	
		*	*	*	*	*	
2013/07/01 04:		*	*	*	*	*	
2013/07/01 05:							
013/07/01 06:	00 0	0	0	26.005	380.00	1.0074	34.01

Month (hourly short) report example

02str_Tarif_1_2013_06_hourly.txt

Periodic print: Cur. Day (hourly short) report example

_____ Prev. Day (hourly short) Previous day flows in hourly details 2013.07.01 06:00 -_____ 11PTYXY _____ Type of flowmeter: Nozzle UNIFLOW-200 MFC_200-063 STO 1.str. Machine: Branch: Branch:
 UVOL
 CVOL
 Energy
 P_avg.
 T_avg.
 K_avg.
 Inf.c.v

 *
 *
 *
 *
 *
 *
 *
 *

 *
 *
 *
 *
 *
 *
 *
 *

 *
 *
 *
 *
 *
 *
 *
 *

 *
 *
 *
 *
 *
 *
 *
 *
 *

 *
 *
 *
 *
 *
 *
 *
 *
 *

 *
 *
 *
 *
 *
 *
 *
 *
 *

 *
 *
 *
 *
 *
 *
 *
 *
 *

 *
 *
 *
 *
 *
 *
 *
 *
 *

 *
 *
 *
 *
 *
 *
 *
 *
 *

 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 Time UVOL CVOL Energy P_avg. T_avg. K_avg. Inf.c.v 2013/06/30 07:00 2013/06/30 08:00 2013/06/30 09:00 2013/06/30 10:00 2013/06/30 11:00 2013/06/30 12:00 2013/06/30 13:00 2013/06/30 14:00 2013/06/30 15:00 2013/06/30 16:00 2013/06/30 17:00 2013/06/30 18:00 2013/06/30 19:00 2013/06/30 20:00 2013/06/30 21:00 2013/06/30 22:00 2013/06/30 23:00 2013/07/01 00:00 2013/07/01 01:00 2013/07/01 02:00 2013/07/01 03:00 2013/07/01 04:00 2013/07/01 05:00 2013/07/01 06:00 Previous day flows UVOL: 4 SMCF CVOL: 52 Energy: 46 52 MCF 46 MMBTU 0 MCF Premium CVOL: Previous day averages P_average: 174.0453 PSIA T_average: 57.2000 °F K_average: 0.9780 -Previous day maximal hourly corrected volume CVOL_hourly_max: 0 MCF Max_month: month day 0 0 Max day: hour Max hour: 0 Previous day 0.0190 hours Flow time: Fault flow time: 0.0190 hours _____ _____

01strd STO previous day hourly.txt

Periodic print: Prev. Day (hourly defined 1) report example

Previous day	hourly defined flows in hourly	details 2013			
======================================					
Machine:	UNIFLOW-200 M				
	- 1.5	tr 2.Str	3.Str	4.Str	
Time	- CV	OL CVOL	CVOL	CVOL	
-		m3 m3	m3	mЗ	
2013/06/30 07:00		34 5678	9012	3456	
2013/06/30 08:00		34 5678	9012	3456	
2013/06/30 09:00		34 5678	9012	3456	
2013/06/30 10:00		34 5678	9012	3456	
2013/06/30 11:00		34 5678	9012	3456	
2013/06/30 12:00		34 5678	9012	3456	
2013/06/30 13:00		34 5678	9012	3456	
2013/06/30 14:00	12		9012		
2013/06/30 15:00	12		9012		
2013/06/30 16:00	12		9012		
2013/06/30 17:00		34 5678	9012		
2013/06/30 18:00	12		9012		
2013/06/30 19:00		34 5678	9012	3456	
2013/06/30 20:00	12		9012	3456	
2013/06/30 21:00	12		9012	3456	
2013/06/30 22:00		34 5678	9012	3456	
2013/06/30 23:00	12		9012	3456	
2013/07/01 00:00	12		9012	3456	
2013/07/01 01:00		34 5678	9012	3456	
2013/07/01 02:00		34 5678	9012	3456	
2013/07/01 03:00		34 5678	9012	3456	
2013/07/01 04:00		34 5678	9012	3456	
2013/07/01 05:00		34 5678	9012	3456	
2013/07/01 06:00	12	34 5678	9012	3456	

02rpd_previous_day_hourly.txt

Periodic print: Prev. Day (hourly defined 3) report example

_____ Daily billing report (User report 3) Flows in hourly details Printed: 2013.07.02 06:00 -_____ _____ _____ 11PTYXY Meter Location: SH2 Machine: UNIFLOW-200 MFC 200-063 Gas Day :2013/07/01 Contract Time: 6 Meter Tube Inside Diam: 7.874016 inches Orifice Plate Diam. : 3.937008 inches VOLUME factor: 28.000000 Run Time : 23.055694 GC updates : 0 Alarms : 24 Events : 10 C1=98.259332 C2=0.000000 C3=0.000000 IC4=0.000000 NC4=0.000000 H2O=1.740665 IC5=0.000000 NC5=0.000000 C6+=0.000000 CO2=0.000000 N2=0.000000 1.Str 1.Str 1.Str 1.Str
 Instr
 Instr
 Instr
 Instr

 UVOL
 CVOL
 MASS
 Energy

 MCF
 MCF
 1b
 MMBTU

 Previous Day Total
 :
 0
 0
 0

 Current Day Total
 :
 1772
 50137
 3131172
 45007

 Cumulative Total
 :
 55885
 2219188
 104427317
 2174591

 1.Str
 <th
 1.Str
 1.Str
 1.Str
 1.Str
 1.Str
 1.Str

 CVOL
 MASS
 Energy
 Pavg
 Temp.a
 Sup.c.v
 F.time

 MOD
 1b
 MMBTU
 PSIA
 °F
 BTU/SCF
 h
 1.Str Time UVOL
 UVOL
 CVOL
 MASS
 Energy
 P avg

 MCF
 MCF
 1b
 MMBTU
 PSIA

 13
 167
 10469
 150
 174.045

 225
 2743
 171307
 2462
 174.045

 225
 2740
 171144
 2459
 174.045

 225
 2742
 171305
 2462
 174.045

 225
 2742
 171301
 2462
 174.045

 225
 2742
 171301
 2462
 174.045

 225
 2742
 171301
 2462
 174.045

 225
 2742
 171301
 2462
 174.045

 86
 2186
 136521
 1961
 492.628

 42
 2045
 127738
 1835
 633.441

 42
 2045
 127733
 1836
 633.411

 42
 2045
 127727
 1835
 633.381

 42
 2045
 127727
 1835
 633.381

 42
 2045
 127
 MMBTU
 PSIA
 °F
 BTU/SCF
 n

 150
 174.045
 57.20
 997.95
 0.0611
 hour 06-07
 2462
 174.045
 57.20

 2459
 174.045
 57.20
 997.95 07-08 1.0000 997.95 0.9990 08-09 57.20 997.95 0.9990 57.20 997.95 1.0000 57.20 997.95 1.0000 52.88 997.95 0.9958 50.97 997.95 1.0000 50.97 997.95 1.0000 50.96 997.95 1.0000 50.96 997.95 1.0000 50.96 997.95 1.0000 09-10 10-11 11-12 12-13 12-13 13-14 14-15 15-16 16-17
 2045
 127724

 2045
 127724

 2045
 127724

 2045
 127724

 2045
 127724

 2045
 127709
 1835 633.376 17-18 18-19 50.96 50.96 997.95 1.0000 1835 633.372 997.95 1.0000 19-20 20-21 1835 633.371 50.96 50.96 997.95 1.0000 1834 633.381 997.95 0.9999 21-22 22-23 2045 127727 2045 127731 1835 633.383 50.96 50.96 997.95 1.0000 1835 633.398 997.95 1.0000
 2045
 127731
 1835
 633.398

 2045
 127731
 1836
 633.407

 2045
 127735
 1835
 633.422

 2045
 127733
 1835
 633.418

 2045
 127733
 1835
 633.418

 2045
 127733
 1835
 633.415

 2045
 127733
 1835
 633.416

 2045
 127735
 1835
 633.422

 2045
 127735
 1835
 633.422
 23-00 00-01 50.97 997.95 1.0000 50.97 997.95 1.0000 4∠ 42 42 42 42 42 01-02 02-03 03-04 04-05 05-06 50.97 997.95 1.0000 50.97 997.95 1.0000 50.97 997.95 1.0000 50.97 997.95 1.0000 50.97 997.95 1.0000 50.97 997.95 1.0000 42 P T/A: 1772 50137 3131172 45007 525.232 52.43 997.95 23.0557 C T/A:

Reason for Irregularity or Remark : _

Acknowledged By :

(COMP1)	(COMP2)	(COMP3)

03rpds_previous_day_hourly.txt

Annex B. Drawings

ANI8						
0/4-20mA a	analogue input	module				
Channel	25-pin	'D sub'				
No	(+)	(-)				
1	14	1				
2	15	2				
3	16	3				
4	17	4				
5	18	5				
6	19	6				
7	20 7					
8	21 8					
24V _{out}	22	9 (AGND)				

PT4							
Pt100	Pt100 RTD input module						
Channel	25-pin						
No	(+)	(-)					
1	14 (U)	1 (U)					
	15 (I)	2 (I)					
2	16 (U)	3 (U)					
	17 (I)	4 (I)					
3	18 (U)	5 (U)					
	19 (I)	6 (I)					
4	20 (U)	7 (U)					
	21 (I)	8 (I)					
24V _{out}	22	9 (AGND)					

ANI4/PT2						
0/4-20mA ar	nalogue and Pt	100 RTD				
ir	nput module					
Channel	25-pin '	D sub'				
No	(+) (-)					
1	14	1				
2	15	2				
3	16	3				
4	17	4				
5	18(U)	5(U)				
Pt100	19(I)	6(I)				
6	20(Ü)	7(Ü)				
Pt100	21(I)	8(I)				
24V _{out}	22	9				

NOTE

Maximum load of the 24V_{out} transmitter power output is 200 mA total (as sum of loads on every board providing transmitter power output). Terminal pairs of the pulse inputs and 4 terminal points of the RTD inputs not in use must be connected together (short circuited).

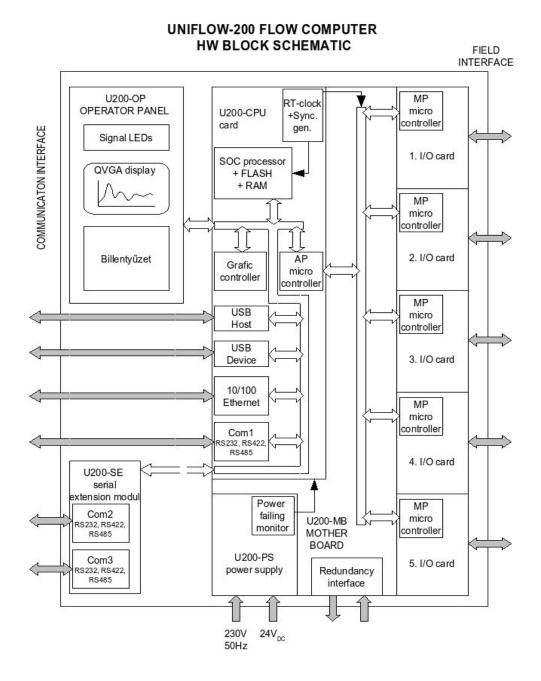
TERMINALS

Pulse/frequency and digital input and digital
output module

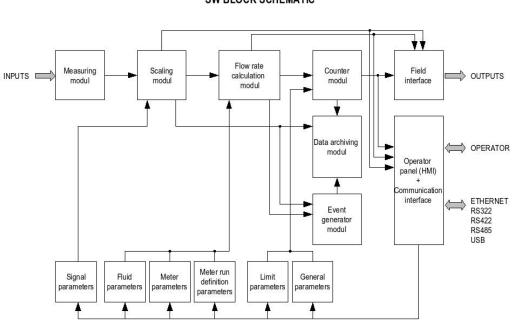
ouput module					
Channel	25-pin	'D sub'			
No	(+)	(-)			
1 (p_in)	14	1			
2 (p_in)	15	2			
3 (p_in)	16	3			
4 (p_in)	17	4			
5 (d_in)	22	13			
6 (d_in)	9	13			
7 (d_in)	23	13			
8 (d_in)	10	13			
9 (d_in)	24	13			
10 (d_in)	11	13			
11 (d_in)	25	13			
12 (d_in)	12	13			
13 (d_out)	18	5			
14 (d_out)	19	6			
15 (d_out)	20	7			
16 (d_out)	21	8			

DEI4		
Input module for smart transmitters with		
Honeywell DE protocoll		
Channel	25-pin 'D sub'	
No	(+)	(-)
1	14	1
2	15	2
3	16	3
4	17	4

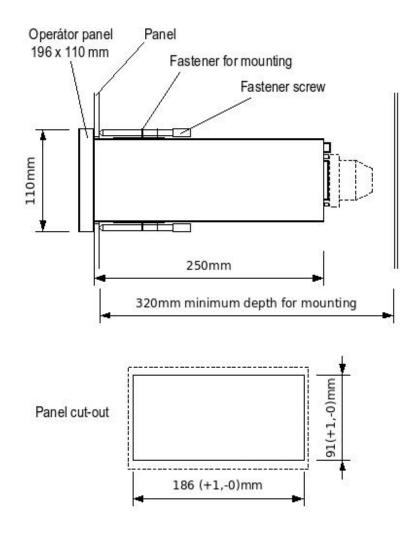
HTI4x15				
Input module for smart transmitters with				
Н	HART protocoll			
Loop No	25-pin 'D sub'			
No	(+)	(-)		
1	14	1		
2	15	2		
3	16	3		
4	17	4		
24V _{out}	22	9		

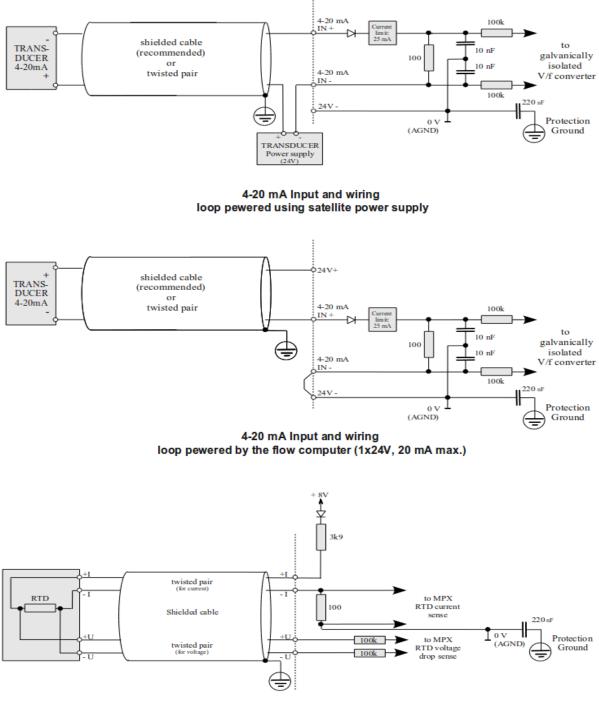

0/4-20mA analogue and digital output			
and digital input module			
Channel	25-pin 'D sub'		
No	(+)	(-)	
1 (a_out)	14	1	
2 (a_out)	15	2	
3 (a_out)	16	3	
4 (a_out)	17	4	
5 (d_in)	22	13	
6 (d_in)	9	13	
7 (d_in)	23	13	
8 (d_in)	10	13	
9 (d_in)	24	13	
10 (d_in)	11	13	
11 (d_in)	25	13	
12 (d_in)	12	13	
13 (d_out)	18	5	
14 (d_out)	19	6	
15 (d_out)	20	7	
16 (d_out)	21	8	

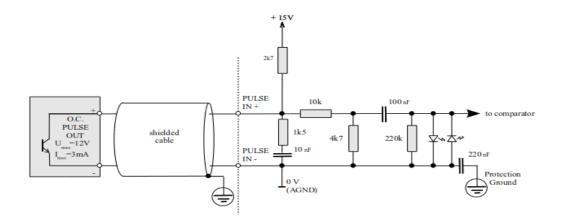
COM1, COM2, COM3			
9-pin 'D sub'	RS232	RS485	RS422
1			
2	RxD		Rx+ (A)
3	TxD	RxTx-	Tx- (Z)
4			
5	GND	GND	GND
6			
7	RTS	RxTx+	Tx+ (Y)
8	CTS		Rx- (B)
9			

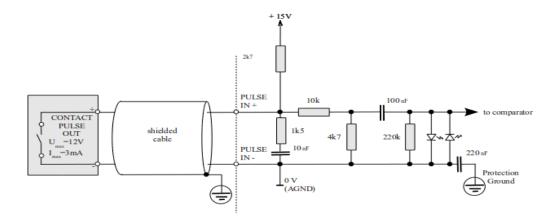

MB, Hot/stand-by interface and flow computer status		
Terminal Signal		
label	-	
0	Operating (output)	
С	Common (output)	
E	Fault (output)	
+S	Sense+ (input)	
-S	Sense- (input)	

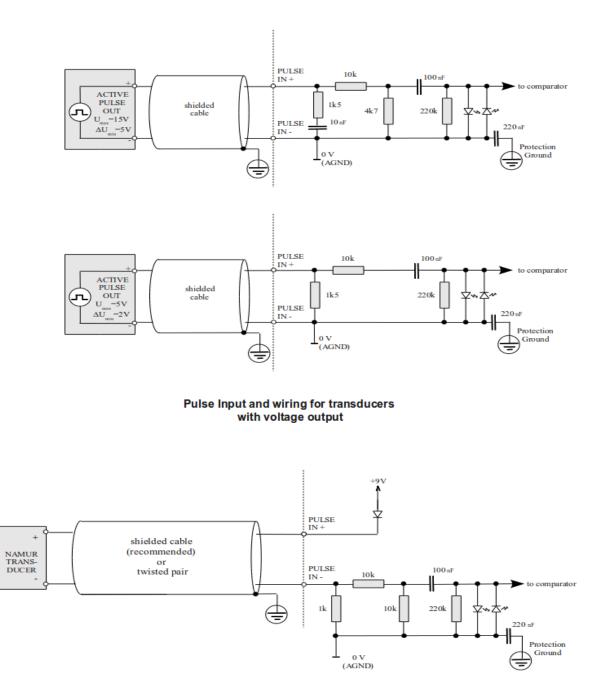
PDIO484

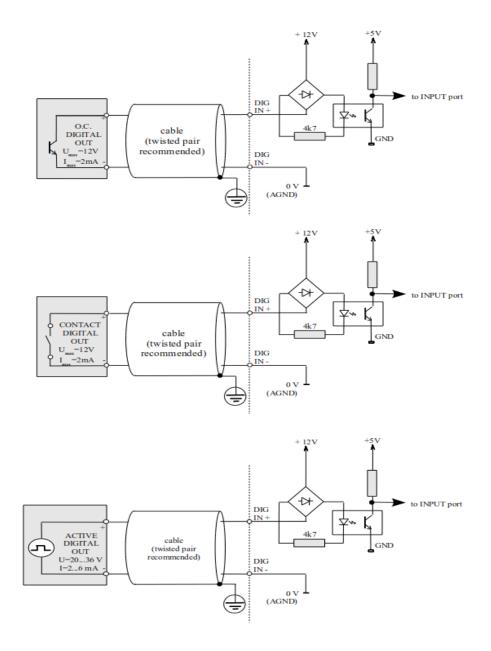

AODIO484

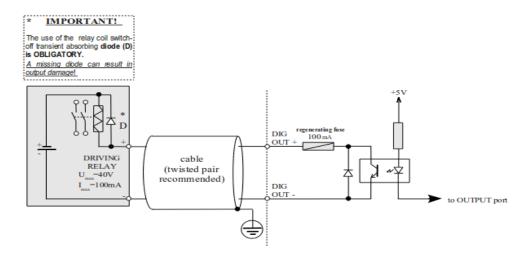

370

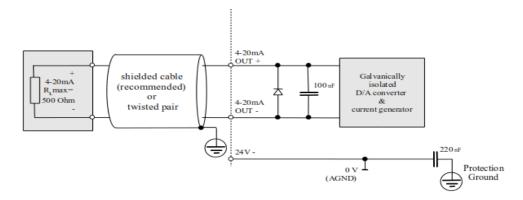

UNIFLOW-200 FLOW COMPUTER SW BLOCK SCHEMATIC

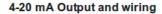

Mounting and cut-out

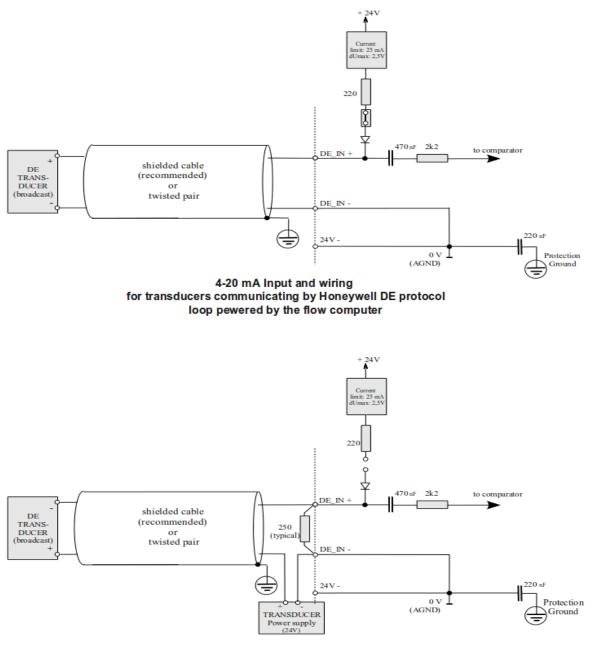

PRT/RTD Input and wiring

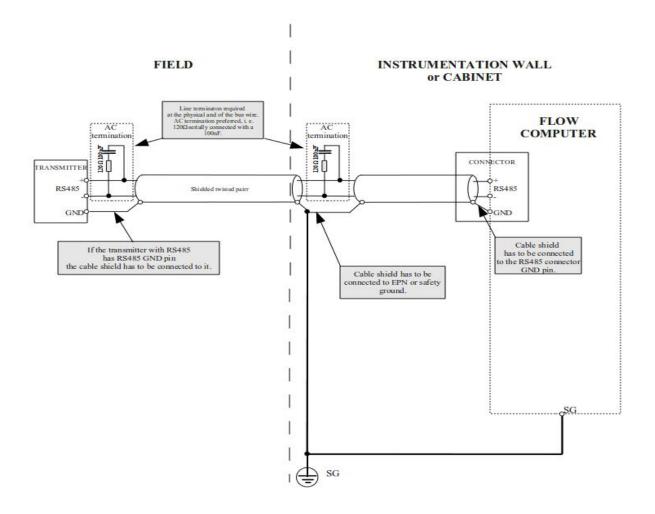

Pulse Input and wiring for transducers with Open Collector (NPN) output

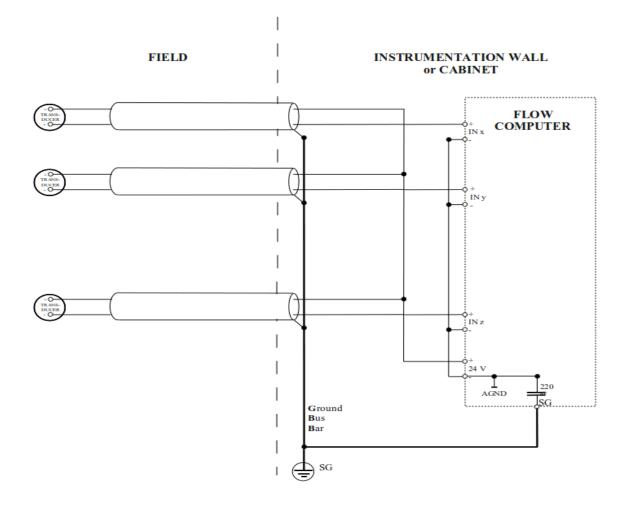

Pulse Input and wiring for transducers with potential free contact output

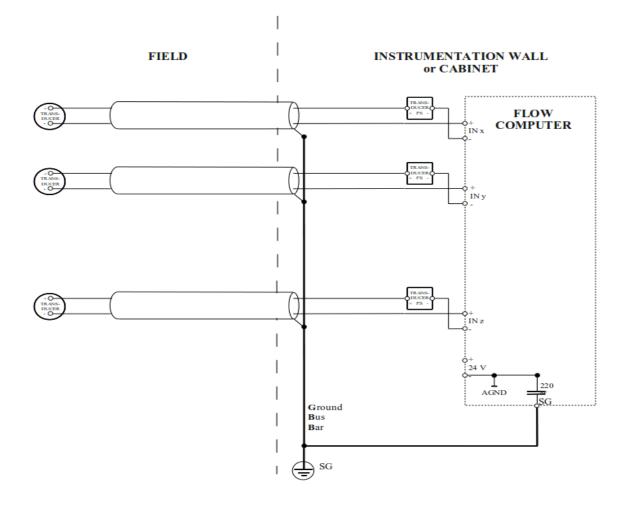

Pulse Input and wiring for transducers with voltage output

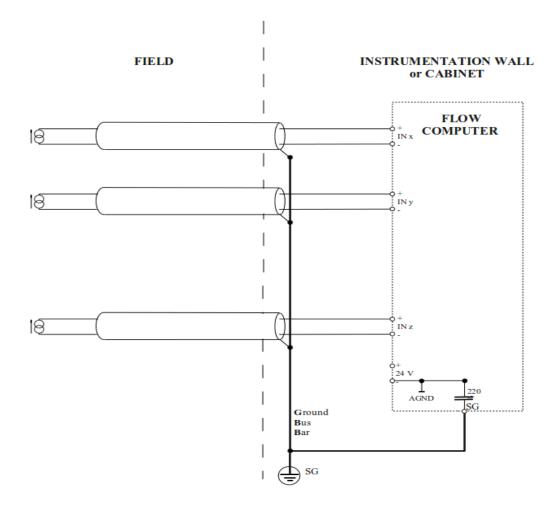


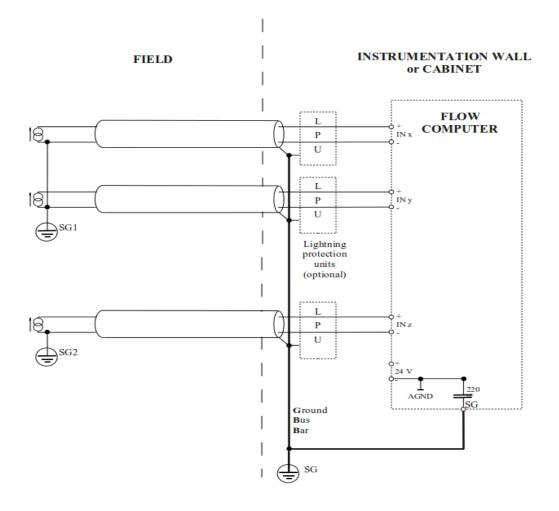

Digital Input and wiring

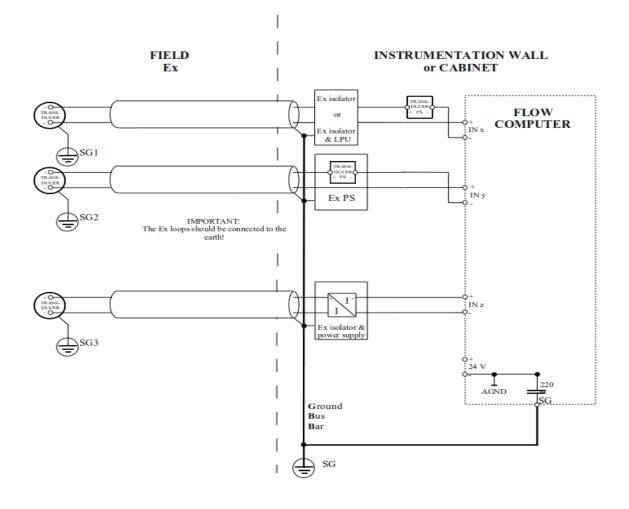


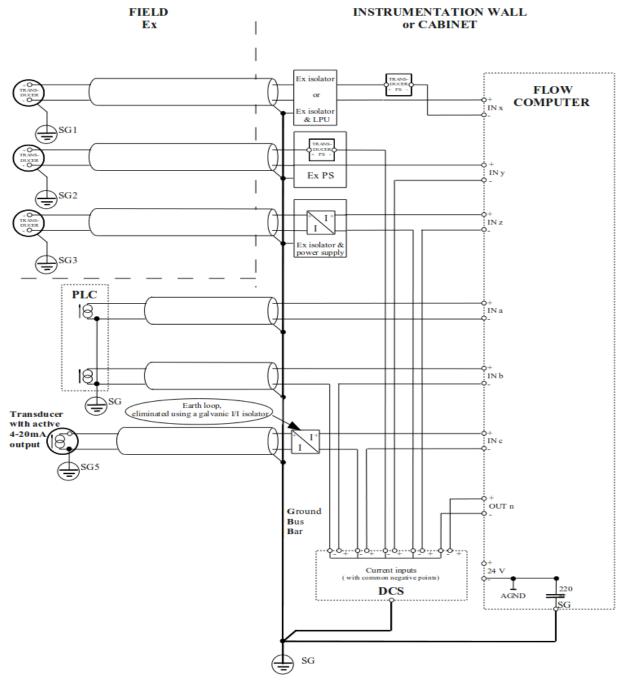


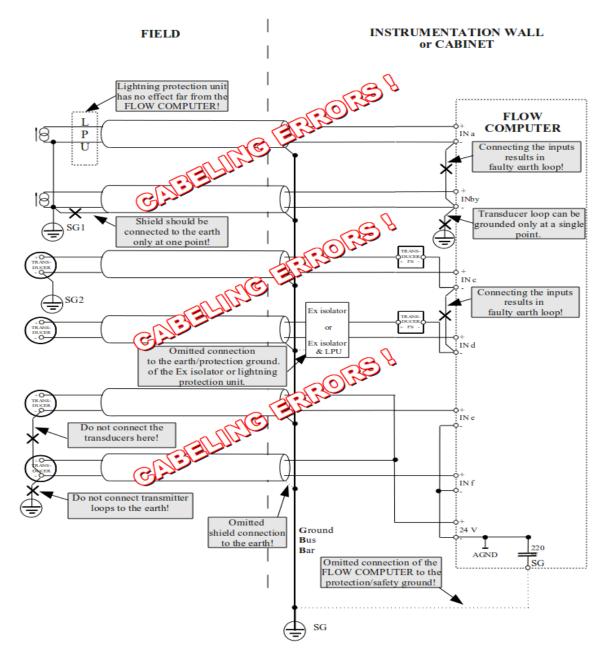

4-20 mA Input and wiring for transducers communicating by Honeywell DE protocol loop pewered using satellite power supply


Connection to transmitter equipped with RS485 interface


Wiring of the 4-20 mA inputs, loop powered by the flow computer


Wiring of the 4-20 mA inputs, loop powered using satellite power supplies


Wiring of the 4-20 mA inputs, transducers with active outputs isolated from the earth


Wiring of the 4-20 mA inputs, transducers with active outputs connected to the erth and optional lightning protection

Wiring of the 4-20 mA inputs in case of explosive (Ex) environment

Wiring of the 4-20 mA inputs in case of different type devices, connected to the earth in different places

Typical mistakes of the 4-20 mA input wiring

Annex C. Application notes for HTI4x15 I/O board

The HTI4x15 I/O board is designed to communicate with transmitters with HART protocol. One board is capable to serve 4 HART loops with maximum 15 process variable (PV) on each loop. The maximum number of input channels on one board is 4x15=60.

Multidrop mode

In multidrop mode one loop can accommodate maximum 15 transmitters and maximum 15 PVs can be read. If more then one PV is read from one transmitter then the maximum number of transmitter in one loop is decreased accordingly.

The parameters of the HART channels are setup in the I/O signal setup menu. The process variables from the transmitters are assigned to the channels of the IO board. The assignment shall be started from channel 1 and shall be continuous.

Parameters to be defined for each channel are as follows:

- serial number of HART loop (1 to 4);
- polling address of the transmitter (1 to 15)
- serial number of the process variable (1 to 4)

The low scale and high scale values for the channel must be set equal to the low scale and high scale value set in the transmitter.

Transmitter mode

In transmitter mode only one transmitter is connected on one loop. In this mode the transmitter current signal can be connected to some external device (e.g. PLC or DCS) analog input board while UNIFLOW-200 will read the process variable from the transmitter on HART protocol.

The polling address in transmitter mode must be set to 0.

Transmitter settings

The parameters of the transmitter shall be setup before it is connected to UNIFLOW-200. The hand held communicator can be used to setup the transmitter.

Precautions to be observed in transmitter setup:

- the low scale and high scale values in the transmitter must be equal with the ones set in the UNIFLOW-200;
- the polling address must be from 0 to 15;
- transmitters connected to one loop must have different polling addresses;
- no transmitter can be set to burst mode.

Wiring and cabling

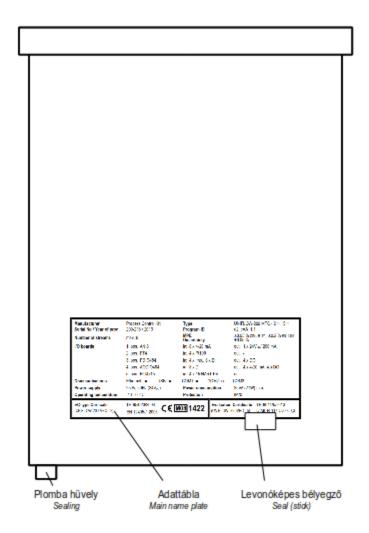
Transmitters shall be wired as shown in Annex B.

The load resistance in the HART loop (if there is no other consideration) shall be $R_t = 250$ ohms. HART recommend resistance from 230 to 1100 ohms.

Rules to be followed selecting the loop resistance:

the minimum operational voltage should be provided for all the transmitters connected in one loop. This
minimum voltage is from 6 to 10 V depending on the manufacturer and type of the transmitter. The Rt
load resistance determined form the equation:

 $U_{\text{transmitter_min}} < U_{\text{power}} - n * 4\text{mA} * (R_t + R_{\text{wire}})$ where: Upower


- voltage of the power supply n
 - number of transmitters in one loop
 - resistance of the cable Rwire
- the RC time-lag shall be calculated for the cable. The RC time-lag depends on the
 - Rt resistance; -

-

- quality of the cable (resistance, capacitance, isolation material); -
- input capacitance of the HART transmitters; -
- presence of other equipment in the loop. -

The RC time-lag shall not exceed 65 microseconds.

Manufacturer Serial No / Year of prod.	Process Control Kft. 200-218 / 2013	Type Program ID	UNIFLOW-200 MFC - 2 □ 5 □ u2_cAA_1.1
Number of streams	max. 8	MPE Uncertainty	± 0.03 % OIML R117, $\ \pm 0.2$ % EN12405 ± 0.05 %
I/O boards	1. pos. ANI8	in: 8 x 4-20 mA	out: 1 x 24V _{DC} / 200 mA
	2. pos. PT4	in: 4 x Pt100	out: -
	3. pos. PDIO484	in: 4 x imp., 8 x DI	out: 4 x DO
	4. pos. AODIO484	in: 8 x DI	out: 4 x 4-20 mA, 4 x DO
	5. pos. HTI4x15	in: 4 x 15 HART PV	out: -
Communications	Ethernet USB	COM1 ■ COM2 □	COM3 🗆
Power supply	230V, 50Hz (24V₀c)	Power consumption	25VA (21W) max.
Operating temperature	-1060°C	Protection	IP20
EC-type Cerficate (UNIFLOW-200 MFC - 2)	TH-8543/3/2008 EN 12405-1:2005		Certificate TH-8614/5/2013 200 MFC - 5) OIML R 117 Class 0,3

Main name plate and seal position